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Congruences



Congruences

Definition

Let n be a positive integer. Two integers a and b are congruent

modulo n if their difference is divisible by n.
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Chinese remainder theorem

Theorem (Chinese remainder theorem)

Let m1,m2, . . . ,mk ∈ Z be pairwise coprime positive (non-zero)

integers. Then for all integers a1, a2, . . . , ak ∈ Z there exists en

integer x ∈ Z , unique modulo n =
∏

mi , such that


x ≡ a1 mod m1

x ≡ a2 mod m2

. . .

x ≡ ak mod mk

.
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Modular forms



Modular forms

Let n be a positive integer, the congruence subgroup Γ0(n) is a

subgroup of SL2(Z ) given by

Γ0(n) =

{(
a b

c d

)
∈ SL2(Z ) : n | c

}
.
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Given a pair of positive integers n (level) and k (weight), a

modular form f for Γ0(n) is an holomorphic function on the

complex upper half-plane H satisfying

f (γz) = f

(
az + b

cz + d

)
= (cz + d)k f (z) ∀γ ∈ Γ0(n), z ∈ H

and a growth condition for the coefficients of its power series

expansion

f (z) =
∞∑
0

amq
m, where q = e2πiz .
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Newforms

There are families of operators acting on the space of modular

forms. In particular, the Hecke operators Tp for every prime p.

These operators describe the interplay between different group

actions on the complex upper half-plane.

We will consider only cuspidal newforms: cuspidal modular forms

(a0 = 0), normalized (a1 = 1), which are eigenforms for the Hecke

operators and arise from level n.

We will denote by Sk(n,C) the space of cuspforms and by

Sk(n,C)new the subspace of newforms.
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Hecke eigenvalue field

Definition

Let f be a newform, f =
∑

amq
m. Then Q f = Q ({am}) is a

number field, called the Hecke eigenvalue field of f .

The set {am} is a Hecke eigenvalue system.

Example: S2(77,C)new

f0(q) = q−3q3−2q4−q5−q7+6q9−q11+6q12−4q13+3q15+. . .

f1(q) = q+q3−2q4+3q5+q7−2q9−q11−2q12−4q13+3q15+. . .

f2(q) = q+q2+2q3−q4−2q5+2q6−q7−3q8+q9−2q10+q11+. . .

f3,4(q) = q+αq2 +(−α + 1) q3 +3q4−2q5 +(α− 5) q6 +q7 + . . .

where α satisfies x2 − 5 = 0.

The Hecke eigenvalue fields are Q for f0, f1, f2 and Q (
√

5) for f3,4.
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Hecke algebra

Definition

The Hecke algebra T(n, k) is the Z -subalgebra of

EndC(Sk(n,C)) generated by Hecke operators Tp for every prime

p.

Newforms can be seen as ring homomorphisms f : T(n, k)→ Z .
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Congruence between newforms

Let f and g be two newforms.

f =
∑

amq
m g =

∑
bmq

m.

Definition

We say that f and g are congruent mod p, if there exists an

ideal p dividing p in the compositum of the Hecke eigenvalue fields

of f and g such that

am ≡ bm mod p for all m.
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Example: S2(77)
new
C

f0(q) = q−3q3−2q4−q5−q7 +6q9−q11 +6q12−4q13 +3q15 +. . .

f1(q) = q+q3−2q4 +3q5 +q7−2q9−q11−2q12−4q13 +3q15 + . . .

f2(q) = q+q2+2q3−q4−2q5+2q6−q7−3q8+q9−2q10+q11+. . .

f3,4(q) = q+αq2 + (−α + 1) q3 + 3q4−2q5 + (α− 5) q6 +q7 + . . .

where α satisfies x2 − 5 = 0.

The Hecke eigenvalue fields are Q for f0, f1, f2 and Q (
√

5) for f3,4.

The following congruences hold:

f0 ≡ f1 mod 2, f1 ≡ f3,4 mod p 5, f2 ≡ f3,4 mod p 2,

where p 2 = (2), p 5 | 5 are primes in Q (
√

5).

This is the complete list of possible congruences!
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Congruence graphs



Congruence Graphs

• Nodes correspond to Hecke orbits of newforms of level and

weight in a given set (for f ∈ S(n, k)new a Hecke orbit is the

set of forms τ(f ) for τ : Q f → Q ).

• We draw an edge between two nodes whenever there is a

prime ` for which there is a congruence mod ` between forms

in the orbits.

Let S be the set of divisors of a positive integer and let W be a

finite set of weights, GS,W denotes the associated graph.
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G[1,7,11,77],[2]
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G[1,2,43,86],[2]
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G[1,3,11,33],[2,4]

15



G[1,2,3,5,6,10,15,30],[2,4]
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G[1,2,4,8,16,32,64,128],[4]
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Conjecture

The graph GS,W may not be connected. The computations suggest

the following conjecture:

Conjecture

Given S and W , there exists a finite set W ′, with W ⊆W ′, such

that the graph GS ,W ′ is connected.

This conjecture is equivalent to the connectedness of the algebra

acting on the disjoint sum of newform spaces in the given set of

levels and weights.
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G[1,7,11,77],[2]
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G[1,7,11,77],[2,4,6,8,10]
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G[1,2,43,86],[2]
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G[1,2,43,86],[2,4]
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Some data

For level n ≤ 150 we computed Gdivisors(n),2 and the smallest W for

which Gdivisors(n),W is connected. Set k = max(W ).

k Level

4 38, 45, 46, 51, 52, 54, 62, 68, 69, 72, 74, 75, 76,

86, 87, 92, 93, 94, 96, 98, 99, 100, 108, 110, 111,

116, 121, 123, 124, 134, 135, 142, 144, 147, 148, 150

6 60, 63, 90, 114, 117, 120

8 42, 55, 56, 84, 85, 95, 105, 112, 126, 140, 143

10 70, 77

12 132

14 78, 102, 104, 119, 136

20 138

2 otherwise
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Residual modular Galois

representations



Theorem (Deligne, Serre, Shimura)

Let n and k be positive integers. Let F be a finite field of

characteristic `, with ` - n, and f : T(n, k) � F a surjective ring

homomorphism. Then there is a (unique) continuous semi-simple

representation:

ρf : Gal(Q /Q )→ GL2(F),

unramified outside n`, such that for all p not dividing n` we have:

Tr(ρf (Frobp)) = f (Tp) and det(ρf (Frobp)) = f (〈p〉)pk−1 in F.

Such a ρf is unique up to isomorphism.
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Field cut out by ρf

Given ρf : Gal(Q /Q )→ GL2(F) we say that Kf is the field cut out

by ρf if the extensions Q/Kf /Q satisfies

Gal(Q/Kf ) = ker(ρf )

and so ρf induces an isomorphism Gal(Kf /Q ) ∼= ρf (GQ ) ⊆ GL2(F).
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Remarks

If f and g are congruent modulo ` then there exists primes

λ, λ′ | ` in Q f and Q g , such that ρf ,λ
∼= ρg ,λ′ .

If ρf ,λ
∼= ρg ,λ′ for λ, λ′ | ` in Q f and Q g , then it is not true that

f and g are congruent modulo `.
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Example: nf = 38 and ng = 58

` = 5

kf = kg = 2

nf = 38 = 2 · 19 ng = 58 = 2 · 29

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43

f (Tp) 1 4 1 3 2 4 3 4 4 0 2 3 2 4

g(Tp) 1 4 1 3 2 4 3 0 4 4 2 3 2 4
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Example: nf = 38 and ng = 58

` = 5

nf = 38 = 2 · 19 ng = 58 = 2 · 29

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43

f (Tp) 1 4 1 3 2 4 3 4 4 0 2 3 2 4

g(Tp) 1 4 1 3 2 4 3 0 4 4 2 3 2 4

It seems that ρf ∼= ρg since for lots of primes p we have

Tr(ρf (Frobp)) = f (Tp) = Tr(ρg (Frobp)) = g(Tp) and

det(ρf (Frobp)) = εf (p) = det(ρg (Frobp)) = εg (p).

How can we prove this?
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Computing ρf is “difficult”, but theoretically it can be done in

polynomial time in n, k,#F:

Edixhoven, Couveignes, de Jong, Merkl, Bruin, Bosman (#F ≤ 32):

Example: for n = 1, k = 22 and ` = 23, the number field
corresponding to Pρf (Galois group isomorphic to PGL2(F23)) is
given by:

x24 − 2x23 + 115x22 + 23x21 + 1909x20 + 22218x19 + 9223x18 + 121141x17

+ 1837654x16 − 800032x15 + 9856374x14 + 52362168x13 − 32040725x12

+ 279370098x11 + 1464085056x10 + 1129229689x9 + 3299556862x8

+ 14586202192x7 + 29414918270x6 + 45332850431x5 − 6437110763x4

− 111429920358x3 − 12449542097x2 + 93960798341x − 31890957224

Mascot, Zeng, Tian (#F ≤ 53).
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Example: nf = 38 and ng = 58

` = 5

nf = 38 = 2 · 19 ng = 58 = 2 · 29

Actually, one can use very few traces (14 in this case) to decide this

(joint with Peter Bruin, Leiden University) and prove that

ρf ∼= ρg ∼= ρE6
∼= 1⊕ χ5,

where χ5 is the mod 5 cyclotomic character.
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Entanglement of Modular Forms

joint work with Luis Dieulefait and Gabor Wiese



Question 1

Given f ∈ Sk(n,C)new and fix two primes p and q.

Let Kp and Kq be the fields cut out by ρf ,p and ρf ,q respectively.

Are Kp and Kq linearly disjoint?

Question 2

Given f ∈ Skf (nf ,C)new and g ∈ Skg (ng ,C)new , and two primes p

and q. Let K f ,p and K g ,q be the fields cut out by ρf ,p and ρg ,q

respectively.

Are K f ,p and K g ,q linearly disjoint?

If f and g are congruent modulo ` then certainly K f ,` = K g ,` !
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Entanglement

We start by defining entanglement for Galois representations of

dimension n ∈ Z≥1.

For i = 1, 2 we consider topological fields Fi and semi-simple

continuous Galois representations

ρi : Gal(Q/Q )→ GLn(Fi )

as well as the fields Ki cut out by them.
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Entanglement

Definition

The maximal field of entanglement for ρ1 and ρ2 is K1 ∩ K2.

A field E/Q is called a field of entanglement for ρ1 and ρ2 if

E ⊆ K1 ∩ K2.

We say that ρ1 and ρ2 are fully entanglement or that there is

coincidence if

K1 = K2.
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Entanglement

Definition

We say that ρ1 and ρ2 admit non-abelian entanglement if

K1 ∩ K2 is a non-abelian extension of Q (note that it is always a

Galois extension).

We say that ρ1 and ρ2 are projectively fully entanglement if

ker(ρ1) = ker(ρ2) where ρi is the projectivisation of ρi for i = 1, 2.
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We only consider semi-simple Galois representations in dimension 2

because the application to modular forms. This means for example

that we do not have to consider non-abelian subgroups of the Borel

subgroup.
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Examples of entanglement



Example 1

n = 3715327360, k = 2: choose f corresponding to the isogeny

class of the elliptic curve over Q given by

E : y2 = x3 − x2 − 1033x − 12438. One can show that the

maximal field of entanglement for ρf ,2 and ρf ,3 is Q (
√

5).

Example 2

Modular form g with LMFDB label 5780.2.a.c : the maximal field

of entanglement for ρg ,2 and ρg ,5 is F , with Gal(F/Q ) ∼= S3.
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Example 3

Examples involving weight 1 modular forms of different levels:

LMFDB label Galois group Entanglement: Galois group

183.1.l.a D20 D10

183.1.n.a D10

148.1.f.a S4 S3

296.1.k.a S4

399.1.bi.a A4 C3

399.1.n.a A4
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Non-abelian entanglement



Theorem

Let p, q be distinct primes and consider irreducible Galois

representations ρp : GQ → GL2(Fp) and ρq : GQ → GL2(Fq)

which admit a non-abelian entanglement field. Then the following

two cases can occur

(1) The representations ρp and ρq are projectively fully entangled.

(2) The representations ρp and ρq are not projectively fully
entangled and

(a) the projective images of ρp and ρq are dihedral groups, or

(b) the projective images of ρp and ρq are both S4, or

(c) one projective image is S4 and the other one is Dn with 3 | n.

In all these cases there is a projective field of entanglement whose

Galois group is an irreducible subgroup of PGL2(Fp) and PGL2(Fq).
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Proof.

Since ρp and ρq are irreducible, their images Gp = ρp(GQ ),

Gq = ρq(GQ ) and their projective images Gp and Gq are

irreducible subgroups.

Let Q be the non-abelian Galois group of the entanglement field.

Then Q is a joint quotient of Gp and Gq.
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Proof.

As Gp is irreducible, its centre Z (Gp) is exactly the set of scalar

matrices in it, and hence it is the kernel of Gp � Gp.

The image Up of Z (Gp) under the quotient map Gp � Q is

contained in Z (Q), the centre of Q.

Set Qp = Q/Up, this is a quotient of Gp.

Letting Q = Q/Z (Q), we have the composition of natural

surjections

Gp � Qp � Q.

The exact same arguments apply with q in place of p.
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Proof.

We find that Q is a quotient of both Gp and Gq.

Q is not cyclic, otherwise Q would be abelian.

Therefore Q, Qp and Qq are irreducible groups.

The conclusion can now be read off from the following table:

G emb. irred. quot. G
ab

possible entanglem.

PGL2(Fpr ), p
r ≥ 5 odd - C2 ab.

PSL2(Fpr ), p
r ≥ 7 - 1 -

A5 A5 1 non-ab.

S4 S4,D3 C2 non-ab, ab.

A4 A4 C3 non-ab, ab.

Dn, n ≥ 3 odd Dm,m ≥ 3,m | n C2 non-ab, ab.

Dn, n ≥ 2 even Dm,m ≥ 2,m | n C2 × C2 non-ab, ab.
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Artin representations

Any Artin representation ρ : Gal(Q/Q )→ GL2(C) is semi-simple

and one can always find a Z-lattice such that, after conjugation by

an element of GL2(C), we have ρ : Gal(Q/Q )→ GL2(Z).

If we then fix a surjective ring homomorphism πp : Z→ Fp, we can

reduce ρ by composing it with π : GL2(Z)→ GL2(Fp) induced by π.

Up to conjugation by an element of GL2(Fp) this reduction does not

depend on the choice of lattice.
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Proposition

Let ρp : GQ → GL2(Fp) be an irreducible Galois representation.

Assume that its projective image G is isomorphic to a subgroup of

PGL2(C). Then ρp admits a lift to an Artin representation

ρ : GQ → GL2(C). Moreover, ker(ρ) = ker(ρp), i. e. the fields

cut out by ρp and its lift ρ are the same.

Klein: Any finite subgroup of PGL2(C) is isomorphic to one of the

following groups:

• a cyclic group Cn;

• a dihedral group Dn of order 2n, n ≥ 2;

• the tetrahedral group A4;

• the octahedral group S4;

• the icosahedral group A5.
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Proposition

(a) Any pair of isomorphic finite subgroups G1,G2 ⊂ PGL2(C) is

conjugate by a matrix class in PGL2(C).

(b) Let p be a prime. Any pair of isomorphic finite irreducible

subgroups G1,G2 ⊂ PGL2(Fp) is conjugate by a matrix class in

PGL2(Fp).

44



In our application to Galois representations we need to keep track of

embeddings of groups.

Proposition

Let G1,G2 be finite subgroups of PGL2(C) and suppose there is

an isomorphism α : G1 → G2.

Then there exists a matrix class C ∈ PGL2(C) and a field

automorphism σ : C→ C such that the restriction to G1 of the

automorphism PGL2(σ) ◦ conjC equals α, where conjC and

PGL2(σ) are the automorphisms of PGL2(C) given by conjugation

by C and σ, respectively.
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Let p, q be distinct primes and fix surjections πp : Z � Fp and

πq : Z � Fq.

Proposition

Let ρp : GQ → GL2(Fp) and ρq : GQ → GL2(Fq) be irreducible

Galois representations and assume that they are projectively fully

entangled. Then there exists an Artin representation

ρ : GQ → GL2(Z)

lifting ρp:

ρp = πp ◦ ρ,

as well as a Dirichlet character χ : GQ → Z× and a field

automorphism σ : Q→ Q such that σ(ρ⊗ χ) lifts ρq

ρq = πq ◦ σ(ρ⊗ χ).
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Applications to modular forms



Theorem

Let f ∈ Sk(M;C) and g ∈ S`(N;C) be normalised Hecke

eigenforms and assume that there are distinct prime numbers p, q

such that ρf ,p : GQ → GL2(Fp) and ρg ,q : GQ → GL2(Fq) are

irreducible and they admit non-abelian entanglement. Then

(1) If ρf ,p and ρg ,q are projectively fully entangled, then there

exists a weight one newform F , a Galois automorphism

σ : Q→ Q and a Dirichlet character χ such that

f ≡ F mod p and σ(g)⊗ χ ≡ F mod q
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Theorem

Let f ∈ Sk(M;C) and g ∈ S`(N;C) be normalised Hecke

eigenforms and assume that there are distinct prime numbers p, q

such that ρf ,p : GQ → GL2(Fp) and ρg ,q : GQ → GL2(Fq) are

irreducible and they admit non-abelian entanglement. Then

(2) If ρf ,p and ρg ,q are not projectively fully entangled, then there

exist weight one newforms F , G such that
f ≡ F mod p and g ≡ G mod q.

(a) the projective images of the Artin representations attached to F

and G are both isomorphic to S4, or

(b) the projective images of the Artin representations attached to F

and G are both isomorphic to dihedral groups, or

(c) one of the projective images of the Artin representations

attached to F and G is S4, the other one a dihedral group Dn

with 3 | n.
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Application to elliptic curves



Theorem (Calegari)

Let ` ∈ {2, 3, 5}. If ρ : Gal(Q /Q )→ GL2(F`) is an odd

irreducible representation with cyclotomic determinant then ρ

arises from the `-torsion of an elliptic curve over Q .

Proposition

Let ρE ,p : Gal(Q /Q )→ GL2(Fp) be the Galois representation

associated to the p-torsion of an elliptic curve E/Q . Suppose that

the image of ρE ,p is exceptional, then there exists an elliptic curve

E ′/Q such that ρE ,p and ρE ′,` are projectively entangled, where

` ∈ {2, 3, 5}. If ρE ,p and ρE ′,` are projectively fully entangled,

then ` ∈ {3, 5}.
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Application to abelian varieties



Analogous statements as for elliptic curves but ....

GRH and finite flat group schemes over Z , Dembélé & Schoof, JTNB 2024
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Entanglement of Modular Forms

Samuele Anni

René 25

Puna’auia, August 21st 2025

Thanks!

Happy birthday René !
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