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Congruences

Let n be a positive integer. Two integers a and b are congruent
modulo n if their difference is divisible by n.
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Chinese remainder theorem

Theorem (Chinese remainder theorem)

Let my,my, ..., mx € Z be pairwise coprime positive (non-zero)
integers. Then for all integers a1, ap,...,ax € 7 there exists en
integer x € 7, unique modulo n =[] m;, such that

Xx=a mod m

X=a mod mp

X = ax mod my



Modular forms



Modular forms

Let n be a positive integer, the congruence subgroup o(n) is a
subgroup of SLy(Z) given by



Given a pair of positive integers n (level) and k (weight), a
modular form f for ['g(n) is an holomorphic function on the
complex upper half-plane H satisfying

az+b
cz+d

f(yz) = f( > = (cz+d)*f(z) VyeTo(n),zeH

and a growth condition for the coefficients of its power series
expansion

o
f(z) = Z amq"™, where q=e*z,
0



Newforms

There are families of operators acting on the space of modular
forms. In particular, the Hecke operators T, for every prime p.
These operators describe the interplay between different group
actions on the complex upper half-plane.

We will consider only cuspidal newforms: cuspidal modular forms
(ap = 0), normalized (a; = 1), which are eigenforms for the Hecke
operators and arise from level n.

We will denote by Si(n,C) the space of cuspforms and by
Sk(n, C)™™ the subspace of newforms.



Hecke eigenvalue field

Definition

Let f be a newform, f =3 amq™. Then Q= Q ({am}) is a
number field, called the Hecke eigenvalue field of f.

The set {anm} is a Hecke eigenvalue system.



Hecke eigenvalue field

Definition

Let f be a newform, f =3 amq™. Then Q= Q ({am}) is a
number field, called the Hecke eigenvalue field of f.

The set {anm} is a Hecke eigenvalue system.

Example: S,(77,C)""

fo(q) = 9—3¢°—2¢*—¢°—q"+6q°— q'' +6¢'2 —4q'3+ 3¢ +. ..
fi(q) = 9+¢°—2¢*+3¢°+q"—2¢° —g'1 —2¢'2~4¢"3+3¢'°+ ...
f(q) = 4+ +26°—q* ~2¢°+2¢°—q" —3¢°+¢°—2¢"0+-¢" +. .
f4(9) = g+ag® +(—a+1) ¢*+3¢* —2¢° +(a = 5) ¢°+q'+. ..
where « satisfies x2 — 5 = 0.

The Hecke eigenvalue fields are Q for fy, f1, f» and Q (v/5) for f3 4.



Hecke algebra

Definition
The Hecke algebra T(n, k) is the Z -subalgebra of
Endc(Sk(n, C)) generated by Hecke operators T, for every prime

p.

Newforms can be seen as ring homomorphisms f : T(n, k) — 7Z.



Congruence between newforms

Let f and g be two newforms.

f:Zamqm g:meqm.

We say that f and g are congruent mod p, if there exists an

ideal p dividing p in the compositum of the Hecke eigenvalue fields
of f and g such that

am = by, mod p for all m.



Example: S,(77)2"

fo(q) = —2¢*—q¢°—q"+6¢° - q11—|—6q12—4q13—|—3q15+...
f(q) = —I—q —2q —|—3q5+q —2¢°—q''—2q12—4¢3+3q¢" +. ..
(q) = 9+0°+29*—q*—2¢°+2¢° —q" —3¢°+ ¢° - 2¢'+-¢" +. ..

.4(q) = g+ aq®+ (—«a +1)q3+3q4—2q5+(a—5)q6+q7—|-...
where « satisfies x2 — 5 = 0.

The Hecke eigenvalue fields are Q for fy, fi, f, and Q (v/5) for 3.4

The following congruences hold:

fo = f1 mod 2, fi = f3.4 mod p s, fo = f,4 mod po,

where p, = (2), ps | 5 are primes in Q (v/5).

This is the complete list of possible congruences!
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Congruence graphs



Congruence Graphs

° correspond to Hecke orbits of newforms of level and

weight in a given set (for f € S(n, k)"°" a Hecke orbit is the
set of forms 7(f) for 7: Qs — Q).

e We draw an between two nodes whenever there is a
prime £ for which there is a congruence mod ¢ between forms

in the orbits.

Let S be the set of divisors of a positive integer and let W be a
finite set of weights, denotes the associated graph.
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G11,7,11,77],[2]
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G11,2,43,86],[2]
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G11,3,11,33],[2,4]

[2,11] [2,3]
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G11,2,3,5,6,10,15,30], [2,4]
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G11,2,4,8,16,32,64,128],[4]

degf 28_7
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Conjecture

The graph Gs v may not be connected. The computations suggest
the following conjecture:

Given S and W, there exists a finite set W', with W C W', such
that the graph Gs v+ is connected.

This conjecture is equivalent to the connectedness of the algebra
acting on the disjoint sum of newform spaces in the given set of
levels and weights.



G11,7,11,77],[2]
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G11,2,43,86],[2]
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G11,2,43,86],[2,4]
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For level n < 150 we computed Ggjyisors(n),2 and the smallest W for

which Givisors(n),w is connected. Set k = max(W).

k

Level

10
12
14
20

38,45, 46,51, 52,54, 62, 68,69, 72, 74, 75, 76,
86,87, 92, 93,94, 96,98, 99, 100, 108, 110, 111
116,121,123, 124, 134, 135, 142, 144, 147, 148, 150
60,63,90, 114,117,120

42,55, 56, 84, 85,95, 105, 112, 126, 140, 143

70,77

132

78,102,104, 119,136

138

otherwise
23



Residual modular Galois
representations




Theorem (Deligne, Serre, Shimura)

Let n and k be positive integers. Let [ be a finite field of
characteristic ¢, with 1 n, and f : T(n, k) — FF a surjective ring
homomorphism. Then there is a (unique) continuous semi-simple
representation:

pr: Gal(Q/Q) — GLy(F),
unramified outside nf, such that for all p not dividing nf¢ we have:
Tr(ps(Frob,)) = f(T,) and det(ps(Frob,)) = f((p))p*~* in F.

Such a pf is unique up to isomorphism.
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Field cut out by pr

Given pr : Gal(Q /Q) — GLo(F) we say that Ky is the field cut out
by pr if the extensions Q/Kr/Q satisfies

Gal(@/Kr) = ker(pr)

and so pr induces an isomorphism Gal(Kr/Q) = pr(Gg) C GLo(F).
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Remarks

If f and g are modulo ¢ then there exists primes
AN [ £in Qf and Qy, such that ps \ =, -

If Df \ = Pg v for A, N [ £in Qf and Q, then it is that
f and g are congruent modulo £.
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Example: ns = 38 and n, = 58

(=
ki = kg =2

nf=38=2-19 ng =58=2-29

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43
f(T,) |1 4 1 3 2 4 3 4 4 0 2 3 2 4
g(T,)[1 4 1 3 2 4 3 0 4 4 2 3 2 4
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Example: ns = 38 and n, =58

=5
nf=38=2-19 ng =58=2-29

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43
f(T,) |1 4 1 3 2 4 3 4 4 0 2 3 2 4
g(T,)|1 4 1.3 2 4 3 0 4 4 2 3 2 4

It seems that pr = p, since for lots of primes p we have
Tr(pr(Froby)) = £(Tp) = Tr(pg(Froby)) = g(T}) and
det(pr(Froby)) = c/(p) = det(pg (Frob,)) = ez(p).
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Computing pr is “difficult”, but theoretically it can be done in
polynomial time in n, k, #IF:

Edixhoven, Couveignes, de Jong, Merkl, Bruin, Bosman (#[F < 32):

Example: for n =1, k = 22 and ¢ = 23, the number field
corresponding to Pps (Galois group isomorphic to PGLy(Fo3)) is
given by:

X2 — 2x?3 £ 115x% 4 23x%! 4 1909x%° 4 22218x1° 4 9223x1® 4 121141xY7
+ 1837654x% — 800032x1° + 9856374x* 4 52362168x'% — 32040725x"2
4 279370098x!! 4 1464085056x'0 + 1129229689x° + 3299556862x°
+ 14586202192x7 4 29414918270x° 4 45332850431x> — 6437110763x*
— 111429920358x% — 12449542097x> 4 93960798341x — 31890957224

Mascot, Zeng, Tian (#F < 53).
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Example: ns = 38 and n, = 58

G =1

nf=38=2-19 ng =58=2-29

Actually, one can use very few traces (14 in this case) to decide this
(joint with Peter Bruin, Leiden University) and prove that

pr = pg = pes £ 1D xs,

where x5 is the mod 5 cyclotomic character.
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Entanglement of Modular Forms

joint work with Luis Dieulefait and Gabor Wiese




Given f € Sk(n,C)™" and fix two primes p and gq.
Let KP and K9 be the fields cut out by pr , and pr 4 respectively.

Are KP and K9 linearly disjoint?
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Given f € Sk(n,C)™" and fix two primes p and gq.
Let KP and K9 be the fields cut out by pr , and pr 4 respectively.

Are KP and K9 linearly disjoint?

Question 2
Given f € Sk, (nf, C)™" and g € Sy, (ng, C)™", and two primes p
and q. Let KP and K89 be the fields cut out by pf,p and pg 4

respectively.

Are KP and K& linearly disjoint?
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Given f € Sk(n,C)™" and fix two primes p and gq.
Let KP and K9 be the fields cut out by pr , and pr 4 respectively.

Are KP and K9 linearly disjoint?

Given f € Sk, (nf, C)™" and g € Sy, (ng, C)™", and two primes p
and q. Let KP and K89 be the fields cut out by pf,p and pg 4

respectively.

Are KP and K& linearly disjoint?

If f and g are modulo ¢ then certainly Kf* = K&* |
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Entanglement

We start by defining entanglement for Galois representations of
dimension n € Z >1.

For i = 1,2 we consider topological fields F; and semi-simple
continuous Galois representations

pi : Gal(Q/Q) — GL,(F)

as well as the fields K; cut out by them.

32



Entanglement

The for p1 and po is K1 N K>.

A field E/Q is called a field of entanglement for p; and p; if

E C K1 N Ks.

We say that p; and p> are fully entanglement or that there is
if

K1 = Ka.
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Entanglement

Definition
We say that p; and p> admit non-abelian entanglement if
KiNkKsis a extension of Q (note that it is always a

Galois extension).

We say that p; and p» are if
ker(p1) = ker(pz) where p; is the projectivisation of p; for i = 1,2.



We only consider semi-simple Galois representations in dimension 2
because the application to modular forms. This means for example
that we do not have to consider non-abelian subgroups of the Borel
subgroup.
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Examples of entanglement




Example 1

n = 3715327360, k = 2: choose f corresponding to the isogeny
class of the elliptic curve over Q given by

E :y? = x3 — x®> — 1033x — 12438. One can show that the
maximal field of entanglement for pr > and pr 3 is Q (V/5).

Example 2
Modular form g with LMFDB label 5780.2.a.c : the maximal field
of entanglement for p, > and p, 5 is F, with Gal(F/Q) = S3.
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Example 3

Examples involving weight 1 modular forms of different levels:

LMFDB label | Galois group | Entanglement: Galois group
183.1.1.a D20 DlO

183.1.n.a DlO

148.1.f.a Sy S3

296.1.k.a Sy

399.1.bi.a Aq G

399.1.n.a Az
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Non-abelian entanglement




Theorem

Let p, q be distinct primes and consider irreducible Galois
representations p, : Gy — GLo(F,) and pq : Gg — GL2(Fy)
which admit a . Then the following

two cases can occur

(1) The representations p, and pq are projectively fully entangled.
(2) The representations p, and pq are not projectively fully
entangled and
(a) the projective images of p, and pq are dihedral groups, or

(b) the projective images of p, and pq are both Sa, or
(c) one projective image is Sy and the other one is D, with 3 | n.

In all these cases there is a projective field of entanglement whose

Galois group is an irreducible subgroup of PGL,(F,) and PGL(F,).
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Since p, and pq are irreducible, their images G, = pp(Go ),
Gg = pq(Gg) and their projective images G, and G, are
irreducible subgroups.

Let Q be the non-abelian Galois group of the entanglement field.
Then Q is a joint quotient of G, and Gg.

39



As G, is irreducible, its centre Z(Gp) is exactly the set of scalar
matrices in it, and hence it is the kernel of G, — Ep.

The image U, of Z(Gp) under the quotient map G, — Q is
contained in Z(Q), the centre of Q.

Set Q, = Q/U,, this is a quotient of G,,.
Letting Q = Q/Z(Q), we have the composition of natural
surjections

Ep—»ap_»a'

The exact same arguments apply with g in place of p.
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We find that Q is a quotient of both G, and G.

Q is not cyclic, otherwise Q would be abelian.

Therefore Q, Q, and Q are irreducible groups.

The conclusion can now be read off from the following table:

ab

G emb. irred. quot. | G possible entanglem.
PGLy(Fpr), p" > 5 odd | - G ab.

PSLy(Fpr), p" > 7 - 1 -

As As 1 non-ab.

Sy S4, D3 G non-ab, ab.

Ag As G non-ab, ab.

D, n > 3 odd Dpmym>3,m|n| G non-ab, ab.

Dp,n > 2 even Dmym>2,m|n| G x C | non-ab, ab.

41



Artin representations

Any Artin representation p : Gal(Q/Q) — GL(C) is semi-simple
and one can always find a Z-lattice such that, after conjugation by
an element of GLy(C), we have p : Gal(Q/Q) — GLy(Z).

If we then fix a surjective ring homomorphism 7, : Z — Fp,, we can

reduce p by composing it with 7 : GL2(Z) — GL2(FFp) induced by 7.

Up to conjugation by an element of GL,(IF,) this reduction does not
depend on the choice of lattice.
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Proposition

Let pp : Gy — GLo(Fp) be an irreducible Galois representation.
Assume that its projective image G is

. Then pp, admits a lift to an Artin representation
p: Gg — GLo(C). Moreover, ker(p) = ker(pp), i. e. the fields
cut out by pp and its lift p are the same.

Klein: Any finite subgroup of PGL,(C) is isomorphic to one of the

following groups:

e a cyclic group Cp;

e a dihedral group D, of order 2n, n > 2;

the tetrahedral group Ag;

the octahedral group Sy;

the icosahedral group As.
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(a) Any pair of isomorphic finite subgroups Gy, G C PGLy(C) is
conjugate by a matrix class in PGLy(C).

(b) Let p be a prime. Any pair of isomorphic finite irreducible
subgroups Gi, Gy C PGLy(F,) is conjugate by a matrix class in
PGLo(F,).

a4



In our application to Galois representations we need to keep track of
embeddings of groups.

Proposition

Let Gy, Gy be finite subgroups of PGLy(C) and suppose there is
an isomorphism o : G — Go.

Then there exists a matrix class C € PGLy(C) and a field
automorphism o : C — C such that the restriction to Gy of the
automorphism PGL(0) o conj equals o, where conj and
PGLy(o) are the automorphisms of PGL(C) given by conjugation
by C and o, respectively.
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Let p, g be distinct primes and fix surjections 7, : Z —» F,, and

7q:Z Ty,

Let pp: Gy — GLa2(Fp) and pg : Gy — GLa(Fy) be irreducible
Galois representations and assume that they are

. Then there exists an Artin representation

p: Gg — GLx(Z)

lifting pp:

Pp = Tp O P,
as well as a Dirichlet character x : Gg — 7" and a field
automorphism o : Q — Q such that o(p ® X) lifts pq

pq =mqo0o(p® x).
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Applications to modular forms




Theorem

Let f € Sx(M;C) and g € S¢(N; C) be normalised Hecke
eigenforms and assume that there are distinct prime numbers p, q
such that pf - Gg — GLo(Fp) and pg,q : Gg — GLo(Fq) are
irreducible and they admit . Then

(1) If prp and pg,q are projectively fully entangled, then there
exists a weight one newform F, a Galois automorphism
o : Q — Q and a Dirichlet character x such that

f=Fmodp and o(g)®x=F modgqg
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Theorem

Let f € Sx(M;C) and g € S,(N; C) be normalised Hecke
eigenforms and assume that there are distinct prime numbers p, q
such that ps - Gg — GLo(Fp) and pg,q : Gg — GLo(Fq) are
irreducible and they admit . Then

(2) If prp and pg,q are not projectively fully entangled, then there

exist weight one newforms F, G such that

f=F mod p and g = G mod q.

(a) the projective images of the Artin representations attached to F
and G are both isomorphic to S;, or

(b) the projective images of the Artin representations attached to F
and G are both isomorphic to dihedral groups, or

(c) one of the projective images of the Artin representations
attached to F and G is S4, the other one a dihedral group D,
with 3 | n.
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Application to elliptic curves




Theorem (Calegari)

Let ¢ € {2,3,5}. If p: Gal(Q/Q) — GLy(Fy) is an odd
irreducible representation with cyclotomic determinant then p
arises from the {-torsion of an elliptic curve over Q.

Proposition

Let pep : Gal(Q /Q) — GLo(F,) be the Galois representation
associated to the p-torsion of an elliptic curve E/Q . Suppose that

the image of pg ,, is exceptional, then there exists an elliptic curve
E'/Q such that pg p and pgr 4 are projectively entangled, where
¢ € {2,3,5}. If pep and per 4 are projectively fully entangled,
then ¢ € {3,5}.
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Application to abelian varieties




Analogous statements as for elliptic curves but ....

[10] Schoof, R.: Semistable abelian varieties with good reduction outside 15, Manuscripta Mathe-
matica, 139 (2012), 49-70.

[11] Schoof, R.: Abelian varieties over real quadratic fields with good reduction everywhere, in
preparation.

GRH and finite flat group schemes over 7, Dembélé & Schoof, JTNB 2024
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