


Today’s problem

Given a large prime p, compute an explicit
equation, or equivalently a j-invariant, for a
supersingular elliptic curve over Fp without

revealing its endomorphism ring.

This problem makes sense since computing the endomorphism
ring of a supersingular elliptic curve over a finite field is a hard
problem.
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The inspiration for this talk comes from:

J. Booher, R. Bowden, J. Doliskani, T. B. Fouotsa,
S. D. Galbraith, S. Kunzweiler, S.-P. Merz, C. Petit,
B. Smith, K. E. Stange, Y. B. Ti, C. Vincent, J. F.
Voloch, C. Weitkämper, and L. Zobernig.
Failing to hash into supersingular isogeny graphs.
https://eprint.iacr.org/2022/518.pdf, (2022).
The Computer Journal, Volume 67, Issue 8, August 2024, Pages

2702–271

M. Mula, N. Murru, and F. Pintore.
On Random Sampling of Supersingular Elliptic Curves.
https://eprint.iacr.org/2022/528, (2022).
Ann. Mat. Pura Appl. (4) 204, No. 3, 1293-1335 (2025).
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Endomorphisms of elliptic curves

I An endomorphism of an elliptic curve E defined over a field K
is an isogeny α : E → E or the zero morphism.

I We denote End(E ) := {endomorphisms of E over K}.

We can define two operations on End(E ). Let α, β ∈ End(E ):

α + β : E → E
P 7→ α(P) + β(P)

α ◦ β : E → E
P 7→ α(β(P))

(End(E ),+, ◦) is a ring, called the (geometric) endomorphism
ring.

I We denote End0(E ) := End(E )⊗Z Q. the endomorphism
algebra of E .
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Trivial endomorphisms

For every n ∈ Z, the multiplication-by-n map

[n] : E → E
P 7→ nP = P + · · ·+ P︸ ︷︷ ︸

n times

is an endomorphism. We call it a trivial or scalar endomorphism.

Therefore there is an embedding:

Z ↪→ End(E )
n 7→ [n].

and End(E ) has also the structure of a free Z-module.
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The Frobenius endomorphism

When K = Fq is a finite field, then we always have the Frobenius
endomorphism defined as

πE : E → E
(x , y) 7→ (xq, yq).

So
Z ⊆ Z[πE ] ⊆ End(E ).

Attention: in some cases πE ∈ Z and Z[πE ] = Z.
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Over finite fields

When K is a finite field, End(E ) is always lager than Z.

• If E is ordinary then End0(E ) is isomorphic to the imaginary
quadratic field L = Q(πE ) and End(E ) is isomorphic to an
order inside L.

• If E is supersingular then End0(E ) ' Bp,∞ (the quaternion
algebra ramified exactly at p and ∞) and

End(E ) ' O,

where O is a maximal order inside Bp,∞. In particular

End(E ) = Z + Zα + Zβ + Zγ,

where α, β, γ ∈ End(E ) are nontrivial endomorphisms.
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Motivation: isogeny-based cryptography

I A new kind of elliptic curve cryptography.

I Introduced in 1997 by Couveignes, gained interest in the
math-crypto community starting in the 2010s.

I Based on the isogeny problem (between supersingular elliptic
curves), which is conjectured to be hard even for quantum
computers, making it a candidate for post-quantum
cryptography.

I Two proposals to the NIST Post-Quantum Cryptography
standardization process:

SIDH/SIKE (2017): key exchange protocol, broken in 2022.
SQI-Sign (2023): signature scheme, now in round 2.
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Equivalent supersingular computational problems

Isogeny problem
Given two isogenous elliptic curves E1 and E2 defined
over Fp2 , find an isogeny ϕ : E1 → E2.

Supersingular endomorphism ring problem
Given a supersingular elliptic curve defined over over
Fp2 , compute its endomorphism ring.

One Endomorphism problem

Given a supersingular elliptic curve E defined
over Fp2 , compute α ∈ End(E ) \ Z.
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2018 - K. Eisenträger, S. Hallgren, K. Lauter, T. Morrison, and C. Petit
Supersingular isogeny graphs and endomorphism rings: Reductions and solutions.

Advances in Cryptology – EUROCRYPT 2018.

2020 - K. Eisenträger, S. Hallgren, C. Leonardi, T. Morrison, and J. Park.
Computing endomorphism rings of supersingular elliptic curves and connections
to path-finding in isogeny graphs.
Proceedings of the Fourteenth Algorithmic Number Theory Symposium.

2022 - B. Wesolowski
The supersingular isogeny path and endomorphism ring problems are equivalent.
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS)

2024 - A. Page and B. Wesolowski
The Supersingular Endomorphism Ring and One Endomorphism Problems are
Equivalent.
Advances in Cryptology – EUROCRYPT 2024

2025 - A. H. Le Merdy and B. Wesolowski
The supersingular endomorphism ring problem given one endomorphism.
Preprint

2025 - A. H. Le Merdy and B. Wesolowski
Unconditional foundations for supersingular isogeny-based cryptography.
Preprint
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ONEEND

One Endomorphism problem
Given a supersingular elliptic curve E defined over

Fp2, compute α ∈ End(E ) \ Z.
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Supersingular `-isogeny graphs

Let p > 3 and ` be primes such that p 6= `.

We denote G`(Fp) the supersingular `-isogeny graph over Fp with:

• Vertices:{
Fp -isomorphism classes of supersingular elliptic curves

defined over Fp

}
l

{supersingular j-invariants in Fp2}

• Edges: isogenies of degree ` (up to a certain equivalence).

Number of vertices ∼ p
12 .
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A toy example: G2(F227)
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A nontrivial endomorphism in the graph
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A nontrivial endomorphism in the graph
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A nontrivial endomorphism in the graph

ϕ6 ◦ ϕ5 ◦ · · · ◦ ϕ1 ∈ End(E28a+206).
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Algorithms for computing nontrivial enndomorphisms

D. Kohel
Endomorphism rings of elliptic curves over finite fields.
PhD thesis, University of California, Berkeley, (1996).

C. Delfs, and S.D. Galbraith
Computing isogenies between supersingular elliptic curves over Fp .
Des. Codes Cryptography 78, No. 2, 425-440 (2016).

K. Eisenträger, S. Hallgren, C. Leonardi, T. Morrison, and J. Park.
Computing endomorphism rings of supersingular elliptic curves and connections
to path-finding in isogeny graphs.
Proceedings of the Fourteenth Algorithmic Number Theory Symposium, pages
215–232, (2020).

A. Page and B. Wesolowski
The Supersingular Endomorphism Ring and One Endomorphism Problems are
Equivalent
Advances in Cryptology – EUROCRYPT 2024

J. Fuselier, A. I., M. Kozek, T. Morrison, and C. Namoijam
Computing supersingular endomorphism rings using inseparable endomorphisms.
Journal of Algebra, Volume 668, pp 145–189, (2025)
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Our idea (Fuselier, I., Kozek, Morrison, Namoijam)
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Our idea (Fuselier, I., Kozek, Morrison, Namoijam)

We call πp ◦ ϕ̂(p)
1 ◦ ψ ◦ ϕ1 an inseparable reflection.
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Inseparable reflections

E E ′

E (p) E ′(p)

ϕ

ψ

ϕ̂(p)

πp

• ϕ : E → E ′ is a cyclic isogeny of degree `t ,

• ψ : E ′ → E ′(p) is an isogeny of degree d ,

where ` is prime, and d is square-free and coprime with `.

α := πp ◦ ϕ̂(p) ◦ ψ ◦ ϕ
is an inseparable reflection of degree dp`2t .
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Our algorithm: performance analysis

1. Time Complexity for computing one endomorphism:

Õ(
√
p), under GRH

2. Storage requirement for computing one endomorphism:

O((log(p))2)

3. Towards the full endomorphism ring: If α and β are two
endormorphisms computed in this way (in two different
`-isogeny graphs), then:

• α and β do not commute.

• Λ := Z + αZ + βZ + αβZ is Bass.
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Back to today’s problem

Given a large prime p, compute an explicit
equation, or equivalently a j-invariant, for a
supersingular elliptic curve over Fp without

revealing its endomorphism ring.

Such a curve is called in the literature a hard curve.
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In isogeny-based cryptography...

Knowing the endomorphism ring of the starting curve (public
parameter):

I Sometimes it is required for protocol construction (this is
the case of SQISign).

I It may lead to insecurity (e.g., the CGL hash function is not
collision resistant when starting from a curve with a known
endomorphism ring).

In any case knowing both the endomorphism rings of two
supersingular elliptic curves E1 and E2 allows one to compute an
isogeny ϕ : E1 → E2 in polynomial time.
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We’ll present some ideas from:

J. Booher, R. Bowden, J. Doliskani, T. B. Fouotsa,
S. D. Galbraith, S. Kunzweiler, S.-P. Merz, C. Petit,
B. Smith, K. E. Stange, Y. B. Ti, C. Vincent, J. F.
Voloch, C. Weitkämper, and L. Zobernig.
Failing to hash into supersingular isogeny graphs.
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Equivalent definitions for supersingular elliptic curves over
finite fields

Theorem. Let q = pn, where p is a prime number, and let E
be an elliptic curve over Fq. Then the following are equivalent:

(1) E is a supersingular elliptic curve;

(2) E [pr ] = {OE}, for one (all) r ≥ 1;

(3) The map [p] : E → E is purely inseparable and
j(E ) ∈ Fp2 ;

(4) ]E (Fq) ≡ 1 (mod p) (equivalently tr(πE ) ≡ 0 (mod p));

(5) End(E ) is an order in a quaternion algebra over Q:

End(E ) = Z + Zα + Zβ + Zγ, α, β, γ ∈ End(E ).

(6) The Hasse invariant of E is 0.
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Is j0 ∈ Fp2 a supersingular j-invariant?

To determine whether a given j-invariant corresponds to a
supersingular elliptic curve:

I Use René’s algorithm to compute the trace of Frobenius
of the corresponding elliptic curve.

I The curve is supersingular if the trace t satisfies t ≡ 0
(mod p).

I Time complexity: O(log5 p).
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Exhaustive search

Sp = {supersingular j -invariants in Fp2}.

]Sp =

⌊
p − 1

12

⌋
+


0 : p ≡ 1 (mod 12)

1 : p ≡ 5, 7 (mod 12)

2 : p ≡ 11 (mod 12)

Prob(j ∈ Fp2 is supersingular) ≈ 1
12p

.

Prob(j ∈ Fp is supersingular) =
Õ(
√
p)

p
≈ 1√

p
.

Supersingular j-invariants are rare!

For p of cryptographic size, exhaustive search for supersingular
j-invariants is computationally infeasible in both Fp2 and Fp.
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Õ(
√
p)

p
≈ 1√

p
.

Supersingular j-invariants are rare!

For p of cryptographic size, exhaustive search for supersingular
j-invariants is computationally infeasible in both Fp2 and Fp.

40/53



Exhaustive search

Sp = {supersingular j -invariants in Fp2}.

]Sp =

⌊
p − 1

12

⌋
+


0 : p ≡ 1 (mod 12)

1 : p ≡ 5, 7 (mod 12)

2 : p ≡ 11 (mod 12)

Prob(j ∈ Fp2 is supersingular) ≈ 1
12p

.

Prob(j ∈ Fp is supersingular) =
Õ(
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Õ(
√
p)

p
≈ 1√

p
.

Supersingular j-invariants are rare!

For p of cryptographic size, exhaustive search for supersingular
j-invariants is computationally infeasible in both Fp2 and Fp.

40/53



Exhaustive search

Sp = {supersingular j -invariants in Fp2}.

]Sp =

⌊
p − 1

12

⌋
+


0 : p ≡ 1 (mod 12)

1 : p ≡ 5, 7 (mod 12)

2 : p ≡ 11 (mod 12)

Prob(j ∈ Fp2 is supersingular) ≈ 1
12p

.

Prob(j ∈ Fp is supersingular) =
Õ(
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The cSRS problem

Given a prime p, generate uniformly random
supersingular curves E over Fp2 (or equivalently

superingular j-invariants in Fp2) without revealing
anything about the endomorphism ring.

Crypto Supersingular Random Sampling problem
(cSRS)
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A simpler problem

Given a prime p, generate uniformly random
supersingular curves E over Fp2 (or equivalently

superingular j-invariants in Fp2) without revealing
anything about the endomorphism ring.

Crypto Supersingular Random Sampling problem
(cSRS)

42/53



Deuring’s theorem (part 1)

Theorem. Let p be a prime number, p ≥ 5.

Let E be an elliptic curve over a number field K , with End(E )
isomorphic to an order O in an imaginary quadratic field L.
Let p be a prime ideal of K above p, and suppose that E has
a good reduction modulo p, denoted by Ẽ .

Then Ẽ is supersingular if and only if there is only one prime
ideal of L above p (i.e., p does not split over L).

Rermark: p does not split over L of discriminant D if and

only if
(

D
p

)
6= 1.
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Bröker’s algorithm

Input: A prime p ≥ 5.
Output: A supersingular j-invariant j ∈ Fp.

1: Set q ← 3

2: while
(
−q
p

)
= 1 do

3: Assign q to the next prime equivalent to 3 (mod 4)
4: end while
5: Compute the Hilbert class polynomial HO relative to the

quadratic order O of discriminant −q
6: Find a root α ∈ Fp of HO modulo p
7: Set j ← α

Complexity: Õ((log p)3)
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Bröker’s algorithm

Input: A prime p ≥ 5.
Output: A supersingular j-invariant j ∈ Fp.

1: Set q ← 3

2: while
(
−q
p

)
= 1 do

3: Assign q to the next prime equivalent to 3 (mod 4)
4: end while
5: Compute the Hilbert class polynomial HO relative to the

quadratic order O of discriminant −q
6: Find a root α ∈ Fp of HO modulo p

7: Set j ← α

Complexity: Õ((log p)3)
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Remarks

(1) Broker’s algorithm does not sample uniformly
random supersingular elliptic curves.

For any p, the output belongs to a pre-determined subset
of all possible supersingular j-invariants over Fp2 , i.e. the

roots of HO in Fp, which are Õ(
√
q).

⇓

Random walks in the supersingular `-isogeny graph over
Fp starting from an output of Broker’s algorithm.
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Deuring’s theorem (part 2)

Theorem. Let E be an elliptic curve over Fp and let
α0 ∈ End(E) \Z.

Then there exists an elliptic curve E defined over a number
field K , an endomorphism α of E and a good reduction Ẽ of
E at a prime p of K above p, such that E is isomorphic to Ẽ
and α0 corresponds to α̃ (the reduction of α at p) under the
isomorphism

η : Ẽ → E , η ◦ α̃ ◦ η−1 = α0.
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Remarks

(2) If E is an output of Bröker’s algorithm, then End(E )
can be computed efficiently.

• A copy of O is embedded in End(E ).
• In particular End(E ) contains a non-trivial endomorphism of

small degree, so the endomorphism ring can be heuristically
computed in polynomial time (Love–Boneh 2020).

(3) Walks in the isogeny graph translate the information
about the endomorphism ring from a curve to another:

E E ′
ϕ̂

ϕ

α ∈ End(E ) 1
degϕ (ϕ ◦ α ◦ ϕ̂) ∈ End(E ′)

So, the combination of Broker’s algorithm and random walks
solves the SRS, but not the cSRS problem.
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Equivalent definitions for supersingular elliptic curves over
finite fields

Theorem. Let q = pn, where p is a prime number, and let E
be an elliptic curve over Fq. Then the following are equivalent:

(1) E is a supersingular elliptic curve;

(2) E [pr ] = {OE}, for one (all) r ≥ 1;

(3) The map [p] : E → E is purely inseparable and
j(E ) ∈ Fp2 ;

(4) ]E (Fq) ≡ 1 (mod p);

(5) End(E ) is an order in a quaternion algebra over Q:

End(E ) = Z + Zα + Zβ + Zγ, α, β, γ ∈ End(E ).

(6) The Hasse invariant of E is 0.
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Hasse invariant

An elliptic curve E over Fq is supersingular if and only if the
Hasse invariant of E is 0.

Let p > 2 be a prime number, the Hasse polynomial or
supersingular polynomial is

Hp(t) =

p−1
2∑

j=0

(p−1
2

j

)2

t j

Proposition. Let Eλ denote the elliptic curve

Eλ : y 2 = x(x − 1)(x − λ) (Legendre form)

then Eλ is supersingular if and only if λ ∈ Fp2 is a root of
Hp(t).

How to find a root of Hp(t) efficiently?
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Larger endomorphism ring

An elliptic curve E over Fq is supersingular if and only if
End(E ) is an order in a quaternion algebra over Q.

Idea. Find roots of the polynomial

fn,m,p(x) := gcd(Φn(x , xp),Φm(x , xp)).

This method produces curves known to have endomorphisms
of degree nm, np and mp, and since we wish to avoid
endomorphisms of small degree we should take at least one of
n and m to be exponentially large.

How to find roots in Fp2 of the polynomial fn,m,p(x) efficiently?
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Reverse René’s algorithm

For p > 3, an elliptic curve E over Fp is supersingular if and
only if ]E (Fp) = p + 1 .

Idea. Given p > 3, construct E over Fp such that ]E (Fp) = p + 1.

p =
r∏

i=1

`i − 1, where `i are small distinct odd primes.

Then ]E (Fp2) =
∏r

i=1 `
2
i , so the `i -torsion is Fp2-rational, ∀ `i .

⇓
Compute solutions of the system in the variables x`i and a:{

ψ`i (x`i , a) = 0, ∀i = 1, . . . , r

xp
2

`i
− x`i = 0, ∀i = 1, . . . , r

where ψ`i (xi , a) is the division polynomial of order `i of the curve
parameterized by a.
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Idea. Given p > 3, construct E over Fp such that ]E (Fp) = p + 1.

p =
r∏

i=1

`i − 1, where `i are small distinct odd primes.

Then ]E (Fp2) =
∏r

i=1 `
2
i , so the `i -torsion is Fp2-rational, ∀ `i .

⇓
Compute solutions of the system in the variables x`i and a:{
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Another approach based on then umber of rational points?

An elliptic curve E over Fp2 is supersingular if and only if
]E (Fp2) ≡ 1 (mod p).

Remark: Fp2-maximal curves of genus 1 are supersingular
elliptic curve defined over Fp2

]E (Fp2) = p2 + 1 + 2p

⇓
t = −2p ≡ 0 (mod p)

⇓
E is supersingular.

Can techniques for constructing maximal curves be adapted or
extended to produce Fp2-maximal curve of genus 1, for a large

prime p?
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