Improved Methods for Finding Imaginary Quadratic Fields with High *n*-rank

Michael J. Jacobson, Jr.

Joint work with C. Bagshaw, N. Rollick, and R. Scheidler

René 2025, August 18, 2025

Quadratic Fields

Quadratic field: $\mathbb{Q}(\sqrt{\Delta}) = \{x + y\sqrt{\Delta} \mid x, y \in \mathbb{Q}\}$

- $\Delta \equiv 0,1 \pmod{4}$: discriminant
- Δ or $\Delta/4$ is square-free (fundamental discriminant)
- ullet $\Delta < 0$: imaginary quadratic

 Cl_{Δ} : ideal class group (finite abelian)

• Elementary divisors: d_i such that $d_{i+1} \mid d_i$ and $Cl_\Delta \cong \prod C(d_i)$

 $r_n(\Delta)$: n-rank (number of elementary divisors of Cl_{Δ} divisible by n)

What Do We Know about the p-Rank (p odd prime)?

Not much!

Cohen-Lenstra heuristics: $\{\Delta \mid r_p(\Delta) = k\}$ has positive natural density (approx. $1/p^{k^2}$) for all $k \geq 0$

• seems true (extensive data), not proved for a single pair (p, k).

Some infinite families known for small (p, k):

- for all n and k = 1 (Nagell 1922)
- for all n and k = 2 (Yamamoto 1970)
- p = 3 and k = 3, 4 (Craig 1977)
- p = 5 and k = 2, 3 (Mestre 1992)

Largest Known *p*-ranks

Question: Is the *p*-rank unbounded?

• no known examples with $r_p(\Delta) > 8$

```
r_3(\Delta) \leq 8 Elkies 2025

r_5(\Delta) \leq 4 Schoof 1983 (using Mestre 1983)

r_7(\Delta) \leq 3 Solderitsch 1977

r_{11}(\Delta) \leq 3 Léprevost 1993

r_{13}(\Delta) \leq 3 Ramachandran, J., Williams 2006

r_{17}(\Delta) \leq 3 Mosunov, J. 2016

r_{19}(\Delta) \leq 3 Ramachandran, J., Williams 2006
```

How to Construct Fields with Large *p*-rank?

- **1** Tabulation: compute class group for all $|\Delta| < B$
 - guarantees minimal Δ , must compute everything
- Parameterized families: two approaches
 - solutions to Diophantine equations (Nagell, Yamamoto, Solderitch, ...)
 - torsion points on abelian varieties (Mestre, Schoof, Léprevost)
 - useful for lower bounds on densities, small numbers of fields produced
- Targeted search based on Diophantine methods
 - Diaz y Diaz 1974/78, Llorente and Quer 1988
 - ullet easy to produce many fields, Δ not minimal but reasonably small

Our Results

Goal:

- construct imaginary quadratic fields with "large" p-rank
- as small discriminants as possible

Results (Bagshaw, Rollick, J., Scheidler 2024):

- improvements to Diaz y Diaz's algorithm (1978), generalization to odd n > 3
- ullet smallest known example with $r_5(\Delta)=4$
- first example with $r_7(\Delta) = 4$

Yamamoto 1970: $r_n(\Delta) \ge 2$

Suppose \mathfrak{m}^n is principal (\mathfrak{m} has order dividing n in Cl_{Δ}), i.e.

$$\mathfrak{m}^n = \left(\frac{y + z\sqrt{\Delta}}{2}\right), \quad \text{for } n \in \mathbb{N}, \ y, z \in \mathbb{Z}$$

Taking norms (assuming $N(\mathfrak{m}) = m$):

$$4m^n = y^2 + z^2|\Delta| \tag{1}$$

Idea: find *two* solutions with the *same* Δ and prove that

- ullet both solutions correspond to ideal classes of order **exactly** n
- these classes are independent

Search Method (generalized and simplified Diaz y Diaz)

Want to search for integers m_1, y_1, m_2, y_2 such that

$$4m_1^n - y_1^2 = (\lambda_1^2)z^2|\Delta|$$

$$4m_2^n - y_2^2 = (\lambda_2^2)z^2|\Delta|$$

Fix λ_1, λ_2 . For all m_1, m_2 such that $1 < m_2 < m_1 \le B$:

- Rearrange and equate: $4\lambda_2^2 m_1^n 4\lambda_1^2 m_2^n = (\lambda_2 y_1)^2 (\lambda_1 y_2)^2$
- Factor $4\lambda_2^2 m_1^n 4\lambda_1^2 m_2^n = ab$
- Using $ab = \left(\frac{a+b}{2}\right)^2 \left(\frac{a-b}{2}\right)^2$, set $y_1 = \frac{a+b}{2\lambda_2}$, $y_2 = \frac{a-b}{2\lambda_1}$
- If $y_1,y_2\in\mathbb{Z}$, obtain Δ from $y_1^2-4m_1^n=(\lambda_1z)^2|\Delta|$

Note: Diaz y Diaz parameterizes $m_2 = m_1 + t$ with $1 \leq m_1 < m_2 < m_1^{p/2}$

Improvements

Yields two solutions to (1). To test $r_n(\Delta) \ge 2$:

- Check order n: need $c_i = \gcd(m_i, \lambda_i z) \mid \Delta$ and c_i squarefree
- Check independence: eg. if *n* is prime, need

•
$$m_1 < \sqrt{|\Delta|/4}, \; m_2^{(n-1)/2} < \sqrt{|\Delta|/4}, \; \text{and} \; m_1 \nmid m_2^{(n-1)/2}$$

Improvements:

- **1** Independence requires $m_2 < |\Delta|^{1/(n-1)}$, too restrictive for n > 3
 - ullet compute ideals of norm m_1 and m_2 (extension of Kuroda 1964)
 - compute subgroup they generate
- ② Sieve $f(m_1, m_2) = 4\lambda_2^2 m_1^n 4\lambda_1^2 m_2^n$ instead of factoring each value.

Performance in Practice

Figure: Run times for various upper bounds on m_1 , for p=5

Performance in Practice

Figure: Run times for various upper bounds on m_1 , for p = 11

Search Statistics

239 cores (2x Intel Xeon Gold 6148 CPU, 2.40GHz)

			Search	$\#CI_{\Delta}$	Cl_{Δ}
Prime	В	$\#\Delta$ found	t (days)	computed	t (days)
3	196608	20609841975	197.53	20609841975	1233.77
5	65536	1331448842	1452.29	1331448842	2842.37
7	40960	402708300	1689.29	297354233	3346.00
11	8192	13236853	1258.75	10342190	3346.00
13	5632	5013641	1419.18	2522501	3346.00

Observations:

- fewer examples found for larger *p* (as expected)
- most time is spent computing class groups (by far!)

Results

p	$r_p(\Delta)$	Smallest Known	Smallest Found	$\# \Delta$ Found
3	2	-3299	-3299	19465189858
3	3	-3321607	-3321607	1138191130
3	4	-653329427	-653329427	6454019
3	5	-5393946914743	-5393946914743	6968
5	2	-11199	-11199	1318152618
5	3	-11203620	-11203620	13291706
5	4	-258559351511807	-1264381632596	4518
7	2	-63499	-149519	296341915
7	3	-501510767	-16974157711	1012251
7	4	?	-469874684955252968120	67

$$r_7(\Delta) = 4$$
 example: $Cl_\Delta \cong C(340830) \times C(14) \times C(14) \times C(14) \times C(2) \times C(2) \times C(2)$

Future Work

Fast heuristic filter for larger p-ranks

- Llorente and Quer 1987: use connection between 3-rank and elliptic curve rank, Birch Swinerton-Dyer to estimate rank
- Can we do this for p > 3?

Compare/combine with geometric methods (eg. Gillibert, Levin 2018)?

Adapt Belabas 2004 (tabulation of Δ with $r_3(\Delta) > 1$) for p > 3?

Methods for real quadratic fields?

New ideas!?

Bonus Content: First Attempt With Geometric Methods

Schoof 1983:

• $\mathbb{Q}(\sqrt{M(t)})$, $t \in \mathbb{Q}$ has 5-rank ≥ 2 for

$$M(t) = -(47t^6 + 21t^5 + 598t^4 + 1561t^3 + 1198t^2 + 261t + 47)(t^2 + t + 1)$$

Bagshaw 2021:

- Compute class groups for t=p/q for integers p,q with $\gcd(p,q)=1$ and $1\leq p,q\leq 4000$
- \bullet Yields $\Delta = -23454009318604054148884180799 such that$

$$Cl_{\Delta} \cong C(17601608100) \times C(10) \times C(10) \times C(10) \times C(10)$$

(plus 4 other 5-rank 5 examples)

Happy Un-birthday, René!

