Computing the trace of a supersingular endomorphism
Travis Morrison
joint work with: Lorenz Panny, Jana Sotdkovd, Michael Wills
Virginia Tech

René 25
University of French Polynesia

Elliptic Curves Over Finite Fields
- and the Computation of Square Roots mod p

By René Schoof

Abstract. In this paper we present a deterministic algorithm to compute the number of
F,-points of an elliptic curve that is defined over a finite field F, and which is given by a
Weierstrass equation. The algorithm takes O(log®) elementary operations. As an application
we give an algorithm to compute square roots mod p. For fixed x € Z, it takes O(log’ p)
elementary operations to compute ;/,_ mod p.

Counting points on elliptic curves over finite fields

par RENE SCHOOF

ABSTRACT. ~We describe three algorithms to count the number of points
on an elliptic curve over a finite field. The first one is very practical when
the finite field is not too large; it is based on Shanks’s baby-step-giant-step
strategy. The second algorithm is very efficient when the endomorphism
ring of the curve is known. It exploits the natural lattice structure of this
ring. The third algorithm is based on calculations with the torsion points
of the elliptic curve [18]. This deterministic polynomial time algorithm was
impractical in its original form. We discuss several practical improvements
by Atkin and Elkies.

Point counting on elliptic curves

|
Given a, b € F, compute the number of points on the elliptic curve given by

E:y?’=x34+ax+b

Point counting on elliptic curves

|
Given a, b € F, compute the number of points on the elliptic curve given by

E:y?’=x34+ax+b

H#E(Fp) =1+ #{(x0,y0) € F3: y§ = x3 + axo + b}.

Testing all pairs (xo, yo) takes O(p?) = O(22") time, where n = log p is the size of the
input.

Lang-Trotter: use the equation

E is given by y? = x3 + ax + b. Then

HEE,) =1+ Y <1+ (’W)) .

xo€Fp

This takes O(p) = O(2") time.

Mestre: use the group structure

Mestre's algorithm takes
O(p'/*) = O(2"/*) time.

Schoof: use the Frobenius endomorphism

The Frobenius endomorphism of E is

7 E—- E
(x,y) = (xP,yP).

The fixed points of 7 are precisely E(FF,), so
#E(F,) =#ker(l—7) =deg(l—m)=(1—-m)(1—7)=1—trm+p.

Compute #E(F,) by computing trm, the trace of Frobenius.

Schoof's algorithm

By the Hasse bound |tr| < 2,/p, if we know
tp:=trm (mod /)

for primes ¢ such that [[,¢ > 4,/p then we can recover tr 7 with the CRT.

Computing t; = trm mod ¢

Suppose (¢, p) = 1. An endomorphism 7 € End(E) acts on E[{] ~ (Z/{Z)? as a
“matrix”
g = w|Ew] € End(E[(]) ~ Mx(Z/17)

Computing t; = trm mod ¢

Suppose (¢, p) = 1. An endomorphism 7 € End(E) acts on E[{] ~ (Z/{Z)? as a
“matrix”

g = w\Ew € End(E[(]) ~ Mx(Z/17)

Schoof's method for computing t,

Compute t; by computing the characteristic polynomial of 7y. We have
trm = Tr(mg) (mod £).
Rather than working with points in E[¢]: find 0 < ¢ < ¢ such that
7 + [ple = cm

by computing coordinate functions modulo the division polynomial v;, the monic
polynomial vanishing precisely x(P) for P # 0 € E[(]

Computing tr

Theorem (Schoof)

There is a deterministic polynomial time algorithm to compute #E(Fp).
Let E/F, be given by y? = f(x) and n = [log p].
The cost of computing t; is dominated by the cost of computing

e = (xP mod ¢y(x), (FP~D/% mod yy(x))y)

Since deg 1, = (£ — 1)/2, can compute tr (mod ¢) in O(n*log n) bit operations
(fast euclidean division, Kronecker substitution, fast euclidean algorithm, and
M(n) = O(nlog n) (Harvey—van der Hoeven)).

By the Prime Number Theorem: require t; for O(n/log n) primes ¢, resulting in a
O(n®) algorithm for computing tr .

sage: E = EllipticCurve(GF(2+255-19), [0,486662,0,1,01)
sage: %time E.cardinality()
CPU times: user 1.56 s, sys: 11.6 ms, total: 1.57 s

Wall time: 1.59 s
57896044618658097711785492504343953926856930875039260848015607506283634007912

sage: |

Elkies’ method for computing t; = trm™ mod ¢

For 50% of primes ¢ (asymptotically), ¢ is an Elkies’ primes for E, meaning E admits
a Fp-rational (-isogeny ¢. Note ¢ is rational <= fixes ker ¢ C E[{]. In this case,

W‘ke”z) € End(ker ¢) ~Z/(Z

Elkies’ method for computing t; = trm™ mod ¢

For 50% of primes ¢ (asymptotically), ¢ is an Elkies’ primes for E, meaning E admits
a Fp-rational (-isogeny ¢. Note ¢ is rational <= fixes ker ¢ C E[{]. In this case,

W‘ke”z) € End(ker ¢) ~Z /17

By working modulo the kernel polynomial h(x) of ¢, find 0 < ¢ < ¢ such that

Trz‘kergb + [kaer(b = C(W‘kenﬁ)

Then t, = c.

Elkies’ method for computing t; = trm™ mod ¢

For 50% of primes ¢ (asymptotically), ¢ is an Elkies’ primes for E, meaning E admits
a Fp-rational (-isogeny ¢. Note ¢ is rational <= fixes ker ¢ C E[{]. In this case,

ﬂ-‘ker(z) € End(ker ¢) ~Z /17

By working modulo the kernel polynomial h(x) of ¢, find 0 < ¢ < ¢ such that

Trz‘kergb + [kaer(b = C(W‘kergb)

Then t, = c.
This gives a speedup of a factor of £ = O(log p) in computing t;, because

degepy = (0> —1)/2, degh(x) = (£ —1)/2.

Assuming a heuristic, the SEA algorithm computes tr 7 in O(n*(log n)?) bit operations.

Computing the trace of an endomorphism

Problem: computing traces of endomorphisms

Given an elliptic curve E/Fq and o € End(E), compute tra == a+ a € Z.

Computing the trace of an endomorphism

Problem: computing traces of endomorphisms

Given an elliptic curve E/Fq and o € End(E), compute tra == a+ a € Z.

Why? Ordinary case

Point counting! Also, tr 7 reveals the structure of Z[r] as an algebra.

Computing the trace of an endomorphism

Problem: computing traces of endomorphisms

Given an elliptic curve E/Fq and o € End(E), compute tra == a+ a € Z.

Why? Ordinary case

Point counting! Also, tr 7 reveals the structure of Z[r] as an algebra.

Why? Supersingular case

Four endomorphisms a1, az, a3, ag span End(E) <= det(tr(a;d@}));j = p°.

Moreover, computing traces yields a multiplication table for the basis a1, a, a3, aa.

Representing endomorphisms

Now assume o = ¢ o---0¢1 € End(E) is
represented by a sequence of L many F-rational

€ !l"l] q - (D)

28

isogenies ¢; of degree at most d, each ¢; in ;,?\E .'Q !“e D b
standard form, meaning ?‘2{@%@.‘.:’9,‘% 4
di(x.y) <“"(X) <“"(X))') S\}-@;\‘gf‘j}'@b
iwey vi(x)’ vi(x)) ‘9&\@‘3&: ©
ﬂw

where v;(x) = HO;&Perrd);(X — x(P)).
Figure: G(313,2), The 2-isogeny
graph of supersingular elliptic curves
in characteristic 313

Schoof's algorithm for supersingular endomorphisms

Assume a = ¢ o --- 0 ¢ is an endomorphism of E/IF,, each ¢; = (uj/vi, ysi/ti) in
standard form, ¢ an odd prime. Compute t; := tr & mod ¢ by finding 0 < ¢ < £ such
that
2 _
aj + [degaly = cay.

To compute ay = O“E[é]: let (a(x), b(x)y) = (x,y) and then for i = 1,..., L update
_ (ui(a) si(a)
(a7 b.y)_ <Vi(a)’ t,(a)by>

where arithmetic takes place in Fq[x]/(1¢(x)).

Letting n = [log q] and assuming d = O(1) and L = O(n), we have a O(n*log n)
algorithm for computing t, and a O(n®) algorithm for tr a.

Every prime is an Elkies prime for a supersingular elliptic curve

Suppose E /R is supersingular, where q = p® is a prime power, and let ¢: E — E' be
an isogeny. If j(E) # 0,1728,

1 a s even

F
ker ¢ is defined over q)
:ais odd.

92

Every prime is an Elkies prime for a supersingular elliptic curve

Suppose E /R is supersingular, where q = p® is a prime power, and let ¢: E — E' be
an isogeny. If j(E) # 0,1728,

IF ca
ker ¢ is defined over { 9 a 1s even

@ 2 is odd.

Proof: Suppose g = p??. Then (Waterhouse 69) trm = £2p? so m = [£p?], so
Endg—(E) = Endg, (E).
If : E — E’ is an isogeny, then | = Hom(E’, E)¢ is a left ideal of End(E), and
ker ¢ = ﬂ ker av.

ael

All ker o are [Fg-rational, so ker ¢ is [Fg-rational.

The SEA algorithm for supersingular endomorphisms

Suppose E/F . is supersingular, j(E) # 0,1728.

The SEA algorithm for supersingular endomorphisms

Suppose E /I is supersingular, j(E) # 0,1728. Then E/F . has all of its /-isogenies
defined over F ..

» Every prime is an Elkies prime for supersingular E!
» But o € End(E) need not fix ker ¢
> Compute tr o mod ¢ by finding ¢ such that the characteristic equation

az‘kemf) + [deg O‘”kerqs = C(a}kerqﬁ)

holds in Hom(ker ¢, E[/])

The SEA algorithm for supersingular endomorphisms

Assume

> a=¢po---0¢; is an endomorphism of E/F 2,

» each ¢; = (u;/vi, ysi/t;) in standard form,

» / an odd prime, and h(x) € Fg[x] is the kernel polynomial of an (-isogeny ¢.
Goal: Compute 0 < ¢ < £ such that

a2‘ker¢ + [dega”keub = C(a’keub)’

The SEA algorithm for supersingular endomorphisms

Assume

> a=¢po---0¢; is an endomorphism of E/F 2,

» each ¢; = (u;/vi, ysi/t;) in standard form,

» / an odd prime, and h(x) € Fg[x] is the kernel polynomial of an (-isogeny ¢.
Goal: Compute 0 < ¢ < £ such that

a2‘ker¢ + [dega”ker(b = C(a’keub)‘

To compute a‘ker(b: let (a(x), b(x)y) = (x,y) and then for i = 1,..., L update

i(a) si(a)
v(a) t(a) by)

where arithmetic takes place in Fq[x]/(h(x)).

<

(a, by) = <

Theorem (M.—Panny-Sotdkova-Wills)

Let o = ¢ o--- 0 ¢1 be an endomorphism of a supersingular elliptic curve E defined
over F 2 with j(E) # 0,1728, let n = [log p|, and let £ = O(n) be an odd prime. Let
d = max{deg ¢;}. Assume that Llogd = O(n). Then t; :=tra (mod ¢) can be
computed in an expected O(n3(log n)® + dLn?log n) bit operations.

The time complexity simplifies to O(n3(log n)3) when d = O(1) and L = O(n).

» Work projectively, so we only need O(1) inversions in Fq[x]/(h(x))

» Complexity estimate uses fast euclidean division, Kronecker substitution,
M(n) = O(nlog n) (HvdH2019).

» Where's GRH?? Kunzweiler-Robert (ANTS 2024) give an unconditional algorithm
to compute ®4(X, Y) in time O(£3(log ¢)3)!

Theorem (M.—Panny-Sotdkova-Wills)

Let o = ¢ o--- 0 ¢1 be a separable endomorphism of a supersingular elliptic curve E
defined over IF ;> with j(E) # 0,1728. Let n = [log p|. Assume that Llogd = O(n).
Then tra can be computed in an expected O(n*(log n)? + dLn3) bit operations. When
d = O(1) and L = O(n), the complexity is O(n*(log n)?).

Beyond the SEA algorithm: computing t, for ¢|#E(F)

Since we assume E/IF ;> is supersingular and j(E) # 0,1728, we know
#E(F,2) = (p£1)% To compute t; = tra mod £ for £|#E(F):

1. find P #0 € E[{](F,2)

2. Compute (a + a)(P)

3. solve a small discrete log: t; is the solution to

cP = (a+ a)(P).

Beyond the SEA algorithm: computing t,

Let wg be an invariant differential for E. Then a*wg = c,wge for some ¢, € Fp, and
the map

End(E) — F

o Cy
is a homomorphism of rings, and (when E is supersingular)

tra= Tr]F,,z/le ¢ (mod p).

Beyond the SEA algorithm: computing t,

Let wg be an invariant differential for E. Then a*wg = c,wge for some ¢, € Fp, and
the map

End(E) — F

o Cy
is a homomorphism of rings, and (when E is supersingular)
tra= Tr]F,,z/le ¢ (mod p).

We can “read off" ¢, from «: for separable «, we have

- (82 o (89))

Timings

Implemented in sagemath. To demonstrate the asymptotic speedups offered:

1. For each b € [16,...,32], repeat 5 times:
1.1 Compute random b-bit prime p, pseudorandom supersingular E/F ., and
endomorphism « € End(E) of degree ~ p*
1.2 Compute tr o using Schoof (i.e. get t, with division polynomials), SEA (i.e get ty
with kernel polynomials), SEA 4+ “mod p", SEA + “mod p" + “points”

time (seconds)

% Using division polynomials t ¥
@® Using kernel polynomials
1000 1 | kernel polys and trace mod p
A kernel polys, mod p, and points
800 $
¥
600 -
o v !
400 + *
s ¥
- ¥
200 1 v
- W
* W
CREN B BN B B BN BN BN BN BN B BN BN BN BN RN
16 18 20 22 24 26 28 30 32

bit length of p

time (seconds)

2004 @ Using kernel polynomials *
B kernel polys and trace mod p ' []
17.5 - A kernel polys, mod p, and points
® ®
15.0 A
12.5 - o 0 i
®
10.0 1 ' . .
7.5 1 g ’
5.0 - s ' A = p ?
[| ‘ '] ' ! ! A
2.5 - neey [| ! 4 SN
| A
A
0.0 1 T T T T T T T T T
16 18 20 22 24 26 28 30 32

bit length of p

Thank you! Questions?

