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Motivation

Why study supersingular elliptic curve isogeny graphs?

Interesting math, e.g. point counting (Fouquet-Morain 2002)

Post-quantum crypto (Charles-Goren-Lauter 2009,
De Feo-Kohel-Leroux-Petit-Wesolowski 2020, De
Feo-Fouotsa-Kutas-Leroux-Merz-Panny-Wesolowski 2023 etc.)

▶ Hidden structures in these graphs could serve as attack vectors,
resulting in security weaknesses in these systems

▶ In fact, cryptographers typically assert that the behave
“randomly”

Our work herein analyzes some of the structure of
supersingular elliptic curve isogeny graphs
their subgraphs induced by the Fp-vertices (the spine)
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Supersingular Isogeny Graphs
For primes ℓ ̸= p, define the ℓ-isogeny graph Gℓ(Fp) as follows:

Vertices: Fp-isomorphism classes (i.e. j-invariants) of curves
Edges: ℓ-isogenies over Fp (more or less)

Example: G2(F523)

Renate Scheidler (U Calgary) Structure of Supersingular ℓ-Isogeny Graphs René 25 4 / 26
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Connection to Cryptography

Supersingular ℓ-Isogeny Path Finding Problem
Given two supersingular elliptic curves E , E ′, find a path from E to E ′ in
Gℓ(Fp).

Basis for the security of the aforementioned supersingular isogeny based
cryptosystems.

In practice, the path contains a sub-path of Fp-vertices.

Motivates the study of structural properties of the spine of Gℓ(Fp).
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Isomorphic Supersingular Elliptic Curves

Every Fp-isomorphism class of supersingular elliptic curves has a
representative defined over Fp2

Some are defined over Fp

Every isogeny between supersingular elliptic curves is defined over Fp2

Some are defined over Fp

Curves defined over Fp that are non-isomorphic over Fp can become
isomorphic over Fp2 :

Example – quadratic twists: for t2 ∈ Fp, the curves

E : y2 = x3 + Ax + B and Et : y2 = x3 + At4x + Bt6

are defined over Fp and isomorphic over Fp2 via (x , y) 7→ (t2x , t3y).
They are isomorphic over Fp if and only if t ∈ Fp.
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Graphs from Supersingular Isogenies

For primes ℓ ̸= p, we consider three graphs:

Full supersingular ℓ-isogeny graph Gℓ(Fp)
Vertices: Fp-isomorphism classes (i.e. j-invariants) of supersingular
elliptic curves over Fp2

Edges: ℓ-isogenies∗ over Fp

Spine Sp
ℓ ⊂ Gℓ(Fp): subgraph induced by vertices in Fp

Vertices: Fp-isomorphism classes (i.e. j-invariants) of supersingular
elliptic curves over Fp
Edges: ℓ-isogenies∗ over Fp between these vertices

Restricted Supersingular ℓ-isogeny graph Gℓ(Fp)
Vertices: Fp-isomorphism classes (i.e. not necessarily distinct
j-invariants) of supersingular elliptic curves over Fp
Edges: ℓ-isogenies over Fp between these vertices

∗Up to post-composition by an automorphism over Fp
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Example: p = 1103, ℓ = 2 (Courtesy Sotáková 2019)

A random graph of expected S1103
2

size in G2(F1103)

How do these vertices sit inside the graph?

For crypto, we usually assume that they are randomly distributed
throughout the graph.

p = 1103, random p = 1103, the subgraph
of Fp vertices
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Structure of Gℓ(Fp) (Kohel 1996)

Connected with approximately p/12 vertices

Optimal expander graph

Every vertex has out-degree∗ ℓ + 1

Every vertex has in-degree ℓ + 1 except 0 and 1728 which have
smaller in-degree

By identifying isogenies with their duals, Gℓ(Fp) becomes an
undirected connected graph that is (ℓ + 1)-regular except in the
neighbourhoods of vertices 0 and 1728.

∗Corresponding to the ℓ + 1 subgroups of order ℓ of the ℓ-torsion Z/ℓZ × Z/ℓZ
representing the kernels of the corresponding isogenies
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Structure of Gℓ(Fp) (Delfs & Galbraith 2013)

Not quite .... doesn’t characterize loops or multi-edges.
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Structure of Gℓ(Fp) (H-A-S 2015)

Characterized by simple arithmetic conditions on ℓ and p.
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Mapping Gℓ(Fp) to Gℓ(Fp)
Fp-isomorphism classes → Fp-isomorphism classes

Fp-isogenies → Fp-isogenies

What happens?
Pairs of vertices in Gℓ(Fp) corresponding to quadratic twists merge
into one vertex in Gℓ(Fp)
Isogenies defined over Fp2 but not Fp introduce new edges
Disconnected components in Gℓ(Fp) can merge into one component

Theorem (Arpin, Camacho-Navarro, Lauter, Lim, Nelson, Scholl & Sotáková 2023)

Mapping Gℓ(Fp) to Gℓ(Fp) happens in 4 ways:
Stacking
Folding
Attachment at a vertex
Attachment by a new edge
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Stacking

j1

j2 j3 j4

jt
1

jt
2 jt

3 jt
4

j1

j2 j3j4

Stacking is the default. Almost everything stacks.
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Folding

j1 jt
1 j1

Folding and stacking are mutually exclusive.

For ℓ > 2, only the two components of G2(Fp) containing 1728 fold.
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Attachment at a Vertex

jt
3

j3

jt
2

j2

j1 jt
1

jt
4

j4

jt
5

j5 j3

j2
j1 j5

j4

For ℓ = 2, this does not happen.

For ℓ > 2, the two folding components of G2(Fp) containing 1728 attach
at 1728.

Renate Scheidler (U Calgary) Structure of Supersingular ℓ-Isogeny Graphs René 25 15 / 26
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Attachment by a New Edge

j1

j2 j3 j4

j5

j6 j7 j8

j1

j2 j3j4

j5

j6 j7j8

Two-for-one special: attaching edges come as double edges.

For ℓ = 2, this happens at most once.
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Mapping Gℓ(Fp) to Gℓ(Fp) (H-A-S 2025)

Explicitly characterized by congruence condition on
p (mod 120) for ℓ = 2
p (mod 840) for ℓ = 3

Case ℓ = 2 and p ≡ 11, 59 (mod 120) with p > 59:
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Mapping Gℓ(Fp) to Gℓ(Fp) (H-A-S 2025)

Explicitly characterized by congruence condition on
p (mod 120) for ℓ = 2 . . . almost
p (mod 840) for ℓ = 3

Case ℓ = 2 and p ≡ 71, 119 (mod 120):

or

E.g. for p = 71 E.g. for p = 1319
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Proof Ingredients

ℓ-th modular polynomial: governs adjacency, including loops and
multi-edges with multiplicities

Hilbert class polynomials: governs endomorphism ring and
supersingularity

Supersingularity of 0 and 1728

Occasional explicit isogeny computation (to see where they are
defined)

Going nuts with Chinese Remainder Theorem
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Example: ℓ = 2
Φ2(x , y) = − x2y2 + x3 + y3 + 1488(x2y + xy2)

− 162000(x2 + y2) + 40773375xy
+ 8748000000(x + y) − 157464000000000

Φ2(x , x) = − (x + 3375)2(x − 1728)(x − 8000)

Two loops at j-invariant −3375, one loop each at 1728 and 8000

The resultant of Φ2 and its derivative is

Res2(x) = −4H−3(x)2H−4(x)H−7(x)2H−15(x)2 with

H−3(x) = x , H−4(x) = x − 1728 , H−7(x) = x + 3375
H−15(x) = x2 + 191025x − 121287375

Double edges between 0, 1728, −3375 and the roots of H−15(x)
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Double edges between 0, 1728, −3375 and the roots of H−15(x)
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Example: ℓ = 2
Φ2(x , y) = − x2y2 + x3 + y3 + 1488(x2y + xy2)

− 162000(x2 + y2) + 40773375xy
+ 8748000000(x + y) − 157464000000000

Φ2(x , x) = − (x + 3375)2(x − 1728)(x − 8000)

Two loops at j-invariant −3375, one loop each at 1728 and 8000

The resultant of Φ2 and its derivative is

Res2(x) = −4H−3(x)2H−4(x)H−7(x)2H−15(x)2 with

H−3(x) = x , H−4(x) = x − 1728 , H−7(x) = x + 3375
H−15(x) = x2 + 191025x − 121287375

Double edges between 0, 1728, −3375 and the roots of H−15(x)
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Sp
ℓ for ℓ > 2

For ℓ = 3:
The required Hilbert class polynomials for D = −3, −4, −8, −11,
−20, −32, −35 are still all linear or quadratic

For ℓ = 5:
Two of the required Hilbert class polynomials (for D = −84, −96)
have degree 4 and are irreducible over Z

For ℓ > 5:
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Sp
ℓ for ℓ > 2

For ℓ = 3:
The required Hilbert class polynomials for D = −3, −4, −8, −11,
−20, −32, −35 are still all linear or quadratic

For ℓ = 5:
Two of the required Hilbert class polynomials (for D = −84, −96)
have degree 4 and are irreducible over Z

For ℓ > 5:

Renate Scheidler (U Calgary) Structure of Supersingular ℓ-Isogeny Graphs René 25 21 / 26



Diameter of Sp
2

Diameters (lengths of longest directed path) of components of Sp
2 :

p ≡ 1 (mod 4) and p ≡ 3 (mod 8): between 1 and 5
p ≡ 7 (mod 8) with p ̸≡ 71, 119 (mod 120): (r + 3)/2 where r is
order of the class of a prime Z[

√
−p]-ideal above 2 in the class group

p ≡ 71, 119 (mod 120): ???

Mean component diameters in Sp
2 for the first 250 primes p ≡ 7 (mod 8)
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Centre Count of G2(Fp)

Radius: minimal length over all longest directed paths
Centre: collection of vertices for which the furthest distance to any other

vertex is at most the radius

Size of the center of G2(Fp) for 5 ≤ p ≤ 20, 000

Picture for ℓ = 3 is similar.
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Centre Count Explained

Blue: Centre size of G2(Fp)
Black: p/12 (number of vertices in G2(Fp))
Green: discrete Gauß sampling (mean 1.8 log(p), standard deviation
0.38) of longest path lengths for a 3-regular graph with (p − 1)/12
vertices where p ≡ 1 (mod 12) (thank you, Jonathan Love!)

Red: discrepancy between the theoretically possible and the actual
number of ways in which the furthest distance is at most the radius
(thank you, Thomas Decru and Jonathan Komada Eriksen!)
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Centre Count of Sp
2

Size of the center of G2(Fp) for 5 ≤ p ≤ 20, 000
p ≡ 1 (mod 3) p ≡ 1 (mod 4)
p ≡ 2 (mod 3) p ≡ 3 (mod 4)

Observations:
Centre counts spread out across full range
Higher centre counts for p ≡ 3 (mod 4) (higher radius values)
Similar wave pattern as G2(Fp) despite Frobenius-conjugate paths
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The End!
 

Merci! — Questions (ou Résponses)?
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