Structure of Supersingular Elliptic Curve Isogeny Graphs

Renate Scheidler

Joint work with **Sarah Arpin** (Virginia Tech) and **Taha Hedayat** (U Calgary) (arXiv:2502.03613v2 [math.NT]; to appear at LuCaNT 2025 Proceedings)

René 25 Université de la Polynèsie Française Puna'auia, Tahiti, French Polynesia August 18, 2025

The Dream Team

Happy 35th Birthday, René!

Why study supersingular elliptic curve isogeny graphs?

Why study supersingular elliptic curve isogeny graphs?

• Interesting math, e.g. point counting (Fouquet-Morain 2002)

Why study supersingular elliptic curve isogeny graphs?

- Interesting math, e.g. point counting (Fouquet-Morain 2002)
- Post-quantum crypto (Charles-Goren-Lauter 2009, De Feo-Kohel-Leroux-Petit-Wesolowski 2020, De Feo-Fouotsa-Kutas-Leroux-Merz-Panny-Wesolowski 2023 etc.)

Why study supersingular elliptic curve isogeny graphs?

- Interesting math, e.g. point counting (Fouquet-Morain 2002)
- Post-quantum crypto (Charles-Goren-Lauter 2009,
 De Feo-Kohel-Leroux-Petit-Wesolowski 2020, De
 Feo-Fouotsa-Kutas-Leroux-Merz-Panny-Wesolowski 2023 etc.)
 - ► Hidden structures in these graphs could serve as attack vectors, resulting in security weaknesses in these systems
 - In fact, cryptographers typically assert that the behave "randomly"

Why study supersingular elliptic curve isogeny graphs?

- Interesting math, e.g. point counting (Fouquet-Morain 2002)
- Post-quantum crypto (Charles-Goren-Lauter 2009,
 De Feo-Kohel-Leroux-Petit-Wesolowski 2020, De
 Feo-Fouotsa-Kutas-Leroux-Merz-Panny-Wesolowski 2023 etc.)
 - ► Hidden structures in these graphs could serve as attack vectors, resulting in security weaknesses in these systems
 - In fact, cryptographers typically assert that the behave "randomly"

Our work herein analyzes some of the structure of

- supersingular elliptic curve isogeny graphs
- their subgraphs induced by the \mathbb{F}_p -vertices (the *spine*)

Supersingular Isogeny Graphs

For primes $\ell \neq p$, define the ℓ -isogeny graph $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$ as follows:

- Vertices: $\overline{\mathbb{F}}_p$ -isomorphism classes (i.e. *j*-invariants) of curves
- Edges: ℓ -isogenies over $\overline{\mathbb{F}}_p$ (more or less)

Supersingular Isogeny Graphs

For primes $\ell \neq p$, define the ℓ -isogeny graph $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$ as follows:

- Vertices: $\overline{\mathbb{F}}_p$ -isomorphism classes (i.e. *j*-invariants) of curves
- Edges: ℓ -isogenies over $\overline{\mathbb{F}}_p$ (more or less)

Example: $\mathcal{G}_2(\overline{\mathbb{F}}_{523})$

Connection to Cryptography

Supersingular ℓ-Isogeny Path Finding Problem

Given two supersingular elliptic curves E, E', find a path from E to E' in $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$.

Connection to Cryptography

Supersingular ℓ-Isogeny Path Finding Problem

Given two supersingular elliptic curves E, E', find a path from E to E' in $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{D})$.

Basis for the security of the aforementioned supersingular isogeny based cryptosystems.

In practice, the path contains a sub-path of \mathbb{F}_p -vertices.

Motivates the study of structural properties of the spine of $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$.

Every $\overline{\mathbb{F}}_{p}$ -isomorphism class of supersingular elliptic curves has a representative defined over $\overline{\mathbb{F}}_{p^2}$

• Some are defined over \mathbb{F}_p

Every $\overline{\mathbb{F}}_{p}$ -isomorphism class of supersingular elliptic curves has a representative defined over $\overline{\mathbb{F}}_{p^2}$

• Some are defined over \mathbb{F}_p

Every isogeny between supersingular elliptic curves is defined over \mathbb{F}_{p^2}

• Some are defined over \mathbb{F}_p

Every $\overline{\mathbb{F}}_p$ -isomorphism class of supersingular elliptic curves has a representative defined over $\overline{\mathbb{F}}_{p^2}$

• Some are defined over \mathbb{F}_p

Every isogeny between supersingular elliptic curves is defined over \mathbb{F}_{p^2}

• Some are defined over \mathbb{F}_p

Curves defined over \mathbb{F}_p that are non-isomorphic over \mathbb{F}_p can become isomorphic over \mathbb{F}_{p^2} :

• Example – quadratic twists: for $t^2 \in \mathbb{F}_p$, the curves

$$E: y^2 = x^3 + Ax + B$$
 and $E_t: y^2 = x^3 + At^4x + Bt^6$

are defined over \mathbb{F}_p and isomorphic over \mathbb{F}_{p^2} via $(x,y)\mapsto (t^2x,t^3y)$.

Every $\overline{\mathbb{F}}_{p}$ -isomorphism class of supersingular elliptic curves has a representative defined over \mathbb{F}_{p^2}

• Some are defined over \mathbb{F}_p

Every isogeny between supersingular elliptic curves is defined over \mathbb{F}_{p^2}

• Some are defined over \mathbb{F}_p

Curves defined over \mathbb{F}_p that are non-isomorphic over \mathbb{F}_p can become isomorphic over \mathbb{F}_{p^2} :

• Example – quadratic twists: for $t^2 \in \mathbb{F}_p$, the curves

$$E: y^2 = x^3 + Ax + B$$
 and $E_t: y^2 = x^3 + At^4x + Bt^6$

are defined over \mathbb{F}_p and isomorphic over \mathbb{F}_{p^2} via $(x,y)\mapsto (t^2x,t^3y)$. They are isomorphic over \mathbb{F}_p if and only if $t\in \mathbb{F}_p$.

Graphs from Supersingular Isogenies

For primes $\ell \neq p$, we consider three graphs:

Full supersingular ℓ -isogeny graph $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$

- Vertices: \mathbb{F}_p -isomorphism classes (i.e. j-invariants) of supersingular elliptic curves over \mathbb{F}_{p^2}
- Edges: ℓ -isogenies* over $\overline{\mathbb{F}}_p$

^{*}Up to post-composition by an automorphism over $\overline{\mathbb{F}}_p$

Graphs from Supersingular Isogenies

For primes $\ell \neq p$, we consider three graphs:

Full supersingular ℓ -isogeny graph $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$

- Vertices: \mathbb{F}_p -isomorphism classes (i.e. j-invariants) of supersingular elliptic curves over \mathbb{F}_{p^2}
- Edges: ℓ-isogenies* over F_p

Spine $\mathcal{S}_{\ell}^{p} \subset \mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p})$: subgraph induced by vertices in \mathbb{F}_{p}

- Vertices: \mathbb{F}_p -isomorphism classes (i.e. j-invariants) of supersingular elliptic curves over \mathbb{F}_p
- Edges: ℓ -isogenies* over $\overline{\mathbb{F}}_p$ between these vertices

^{*}Up to post-composition by an automorphism over $\overline{\mathbb{F}}_p$

Graphs from Supersingular Isogenies

For primes $\ell \neq p$, we consider three graphs:

Full supersingular ℓ -isogeny graph $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$

- Vertices: \mathbb{F}_p -isomorphism classes (i.e. j-invariants) of supersingular elliptic curves over \mathbb{F}_{p^2}
- Edges: ℓ -isogenies* over $\overline{\mathbb{F}}_p$

Spine $\mathcal{S}_{\ell}^{p} \subset \mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p})$: subgraph induced by vertices in \mathbb{F}_{p}

- Vertices: \mathbb{F}_p -isomorphism classes (i.e. j-invariants) of supersingular elliptic curves over \mathbb{F}_p
- Edges: ℓ -isogenies* over $\overline{\mathbb{F}}_p$ between these vertices

Restricted Supersingular ℓ -isogeny graph $\mathcal{G}_{\ell}(\mathbb{F}_p)$

- Vertices: \mathbb{F}_p -isomorphism classes (i.e. not necessarily distinct j-invariants) of supersingular elliptic curves **over** \mathbb{F}_p
- Edges: ℓ -isogenies **over** \mathbb{F}_p between these vertices

^{*}Up to post-composition by an automorphism over $\overline{\mathbb{F}}_{
ho}$

Example: p=1103, $\ell=2$ (Courtesy Sotáková 2019)

A random graph of expected size in $\mathcal{G}_2(\overline{\mathbb{F}}_{1103})$

 \mathcal{S}_2^{1103}

Structure of $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$ (Kohel 1996)

- Connected with approximately p/12 vertices
- Optimal expander graph
- Every vertex has out-degree* ℓ + 1
- Every vertex has in-degree $\ell+1$ except 0 and 1728 which have smaller in-degree
- By identifying isogenies with their duals, $\mathcal{G}_{\ell}(\mathbb{F}_p)$ becomes an undirected connected graph that is $(\ell+1)$ -regular except in the neighbourhoods of vertices 0 and 1728.

^{*}Corresponding to the $\ell+1$ subgroups of order ℓ of the ℓ -torsion $\mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$ representing the kernels of the corresponding isogenies

Structure of $\mathcal{G}_{\ell}(\mathbb{F}_p)$ (Delfs & Galbraith 2013)

Structure of $\mathcal{G}_{\ell}(\mathbb{F}_p)$ (Delfs & Galbraith 2013)

Not quite doesn't characterize loops or multi-edges.

Structure of $\mathcal{G}_\ell(\mathbb{F}_p)$ (H-A-S 2015)

$\ell = 2$	$p \equiv 1 \pmod{4}$ $p \equiv 3 \pmod{4}$		$(\bmod 8) p \equiv 7 \pmod 8$		7 (mod 8)	Loops / Multi Edges	
						·······································	p
	•	Λ Λ	*		2	7	
			/ \		3	5, 11	
			• •		5	11, 19	
	$\left(\frac{-p}{\ell}\right) = 1$		(- p \		7	13, 19	
			$\left(\frac{-p}{\ell}\right) = -1$			11	13, 19, 43
> 2	<u> </u>	•			•	13	17, 43
F		7	•		•	17	19, 43, 59, 67
	• • • • •		• • • •			:	:

Structure of $\mathcal{G}_{\ell}(\mathbb{F}_p)$ (H-A-S 2015)

$\ell = 2$	$p \equiv 1 \pmod{4}$	$p \equiv 3 \pmod{8}$		$p \equiv 7 \pmod{8}$	Loops / Multi Edges	
					l	p
					2	7
					3	5, 11
					5	11, 19
	$\left(\frac{-p}{\ell}\right) = 1$			(-p)		13, 19
			$\left(\frac{-p}{\ell}\right) = -1$		11	13, 19, 43
> 2					13	17, 43
3					17	19, 43, 59, 67
	—	— ∙	•	• • •	:	:

Characterized by simple arithmetic conditions on ℓ and p.

 \mathbb{F}_p -isomorphism classes o $\overline{\mathbb{F}}_p$ -isomorphism classes

 \mathbb{F}_p -isogenies o $\overline{\mathbb{F}}_p$ -isogenies

 \mathbb{F}_{p} -isomorphism classes $\rightarrow \mathbb{F}_{p}$ -isomorphism classes

 \mathbb{F}_{p} -isogenies \rightarrow $\overline{\mathbb{F}}_{p}$ -isogenies

What happens?

 \mathbb{F}_p -isomorphism classes \to \mathbb{F}_p -isomorphism classes \mathbb{F}_p -isogenies \to \mathbb{F}_p -isogenies

What happens?

- Pairs of vertices in $\mathcal{G}_{\ell}(\mathbb{F}_p)$ corresponding to quadratic twists merge into one vertex in $\mathcal{G}_{\ell}(\mathbb{F}_p)$
- Isogenies defined over \mathbb{F}_{p^2} but not \mathbb{F}_p introduce new edges
- Disconnected components in $\mathcal{G}_{\ell}(\mathbb{F}_p)$ can merge into one component

 \mathbb{F}_p -isomorphism classes \to $\overline{\mathbb{F}}_p$ -isomorphism classes \mathbb{F}_p -isogenies \to $\overline{\mathbb{F}}_p$ -isogenies

What happens?

- Pairs of vertices in $\mathcal{G}_{\ell}(\mathbb{F}_p)$ corresponding to quadratic twists merge into one vertex in $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$
- Isogenies defined over \mathbb{F}_{p^2} but not \mathbb{F}_p introduce new edges
- Disconnected components in $\mathcal{G}_{\ell}(\mathbb{F}_p)$ can merge into one component

Theorem (Arpin, Camacho-Navarro, Lauter, Lim, Nelson, Scholl & Sotáková 2023)

Mapping $\mathcal{G}_{\ell}(\mathbb{F}_p)$ to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_p)$ happens in 4 ways:

- Stacking
- Folding
- Attachment at a vertex
- Attachment by a new edge

Stacking

Stacking

Stacking is the default. Almost everything stacks.

Folding

Folding

Folding and stacking are mutually exclusive.

(U Calgary)

For $\ell > 2$, only the two components of $\mathcal{G}_2(\mathbb{F}_p)$ containing 1728 fold.

Attachment at a Vertex

Attachment at a Vertex

For $\ell = 2$, this does not happen.

(U Calgary)

For $\ell > 2$, the two folding components of $\mathcal{G}_2(\mathbb{F}_p)$ containing 1728 attach at 1728.

Attachment by a New Edge

Attachment by a New Edge

Two-for-one special: attaching edges come as double edges.

For $\ell = 2$, this happens at most once.

Explicitly characterized by congruence condition on

- $p \pmod{120}$ for $\ell = 2$
- $p \pmod{840}$ for $\ell = 3$

Explicitly characterized by congruence condition on

- $p \pmod{120}$ for $\ell = 2$
- $p \pmod{840}$ for $\ell = 3$

Case $\ell = 2$ and $p \equiv 11,59 \pmod{120}$ with p > 59:

Explicitly characterized by congruence condition on

- $p \pmod{120}$ for $\ell = 2 \dots almost$
- $p \pmod{840}$ for $\ell = 3$

Explicitly characterized by congruence condition on

- $p \pmod{120}$ for $\ell = 2 \dots almost$
- $p \pmod{840}$ for $\ell = 3$

Case $\ell = 2$ and $p \equiv 71,119 \pmod{120}$:

Explicitly characterized by congruence condition on

- $p \pmod{120}$ for $\ell = 2 \dots almost$
- $p \pmod{840}$ for $\ell = 3$

Case $\ell = 2$ and $p \equiv 71, 119 \pmod{120}$:

E.g. for
$$p = 71$$

E.g. for p = 1319

• *l*-th modular polynomial: governs adjacency, including loops and multi-edges with multiplicities

- \ell-th modular polynomial: governs adjacency, including loops and multi-edges with multiplicities
- Hilbert class polynomials: governs endomorphism ring and supersingularity

- \ell-th modular polynomial: governs adjacency, including loops and multi-edges with multiplicities
- Hilbert class polynomials: governs endomorphism ring and supersingularity
- Supersingularity of 0 and 1728

- *l*-th modular polynomial: governs adjacency, including loops and multi-edges with multiplicities
- Hilbert class polynomials: governs endomorphism ring and supersingularity
- Supersingularity of 0 and 1728
- Occasional explicit isogeny computation (to see where they are defined)

- *l*-th modular polynomial: governs adjacency, including loops and multi-edges with multiplicities
- Hilbert class polynomials: governs endomorphism ring and supersingularity
- Supersingularity of 0 and 1728
- Occasional explicit isogeny computation (to see where they are defined)
- Going nuts with Chinese Remainder Theorem

$$\Phi_2(x,y) = -x^2y^2 + x^3 + y^3 + 1488(x^2y + xy^2)$$
$$-162000(x^2 + y^2) + 40773375xy$$
$$+8748000000(x + y) - 157464000000000$$

$$\Phi_2(x,y) = -x^2y^2 + x^3 + y^3 + 1488(x^2y + xy^2)$$
$$-162000(x^2 + y^2) + 40773375xy$$
$$+8748000000(x + y) - 157464000000000$$

$$\Phi_2(x,x) = -(x+3375)^2(x-1728)(x-8000)$$

Two loops at j-invariant -3375, one loop each at 1728 and 8000

$$\Phi_2(x,y) = -x^2y^2 + x^3 + y^3 + 1488(x^2y + xy^2)$$
$$-162000(x^2 + y^2) + 40773375xy$$
$$+8748000000(x + y) - 157464000000000$$

$$\Phi_2(x,x) = -(x+3375)^2(x-1728)(x-8000)$$

Two loops at j-invariant -3375, one loop each at 1728 and 8000

The resultant of Φ_2 and its derivative is

Res₂(x) =
$$-4H_{-3}(x)^2H_{-4}(x)H_{-7}(x)^2H_{-15}(x)^2$$
 with
 $H_{-3}(x) = x$, $H_{-4}(x) = x - 1728$, $H_{-7}(x) = x + 3375$
 $H_{-15}(x) = x^2 + 191025x - 121287375$

$$\Phi_2(x,y) = -x^2y^2 + x^3 + y^3 + 1488(x^2y + xy^2)$$
$$-162000(x^2 + y^2) + 40773375xy$$
$$+8748000000(x + y) - 157464000000000$$

$$\Phi_2(x,x) = -(x+3375)^2(x-1728)(x-8000)$$

Two loops at j-invariant -3375, one loop each at 1728 and 8000

The resultant of Φ_2 and its derivative is

Res₂(x) =
$$-4H_{-3}(x)^2H_{-4}(x)H_{-7}(x)^2H_{-15}(x)^2$$
 with

 $H_{-3}(x) = x$, $H_{-4}(x) = x - 1728$, $H_{-7}(x) = x + 3375$
 $H_{-15}(x) = x^2 + 191025x - 121287375$

Double edges between 0, 1728, -3375 and the roots of $H_{-15}(x)$

\mathcal{S}_{ℓ}^{p} for $\ell > 2$

For $\ell = 3$:

• The required Hilbert class polynomials for D = -3, -4, -8, -11,-20, -32, -35 are still all linear or quadratic

21 / 26

\mathcal{S}^p_ℓ for $\ell > 2$

For $\ell = 3$:

• The required Hilbert class polynomials for D=-3, -4, -8, -11, -20, -32, -35 are still all linear or quadratic

For $\ell = 5$:

• Two of the required Hilbert class polynomials (for D=-84, -96) have degree 4 and are irreducible over $\mathbb Z$

\mathcal{S}_{ℓ}^{p} for $\ell > 2$

For $\ell=3$:

• The required Hilbert class polynomials for D = -3, -4, -8, -11,-20, -32, -35 are still all linear or quadratic

For $\ell = 5$:

• Two of the required Hilbert class polynomials (for D=-84, -96) have degree 4 and are irreducible over \mathbb{Z}

Diameter of S_2^p

Diameters (lengths of longest directed path) of components of S_2^p :

- $p \equiv 1 \pmod{4}$ and $p \equiv 3 \pmod{8}$: between 1 and 5
- $p \equiv 7 \pmod{8}$ with $p \not\equiv 71,119 \pmod{120}$: (r+3)/2 where r is order of the class of a prime $\mathbb{Z}[\sqrt{-p}]$ -ideal above 2 in the class group
- $p \equiv 71,119 \pmod{120}$: ???

22 / 26

Diameter of S_2^p

Diameters (lengths of longest directed path) of components of S_2^p :

- $p \equiv 1 \pmod{4}$ and $p \equiv 3 \pmod{8}$: between 1 and 5
- $p \equiv 7 \pmod{8}$ with $p \not\equiv 71,119 \pmod{120}$: (r+3)/2 where r is order of the class of a prime $\mathbb{Z}[\sqrt{-p}]$ -ideal above 2 in the class group
- $p \equiv 71,119 \pmod{120}$: ???

Mean component diameters in S_2^p for the first 250 primes $p \equiv 7 \pmod{8}$

Centre Count of $\mathcal{G}_2(\overline{\mathbb{F}}_p)$

Radius: minimal length over all longest directed paths

Centre: collection of vertices for which the furthest distance to any other

vertex is at most the radius

Centre Count of $\mathcal{G}_2(\overline{\mathbb{F}}_p)$

Radius: minimal length over all longest directed paths

Centre: collection of vertices for which the furthest distance to any other vertex is at most the radius

Size of the center of $\mathcal{G}_2(\overline{\mathbb{F}}_p)$ for $5 \leq p \leq 20,000$

Picture for $\ell = 3$ is similar.

• Blue: Centre size of $\mathcal{G}_2(\overline{\mathbb{F}}_p)$

- Blue: Centre size of $\mathcal{G}_2(\overline{\mathbb{F}}_p)$
- <u>Black</u>: p/12 (number of vertices in $\mathcal{G}_2(\overline{\mathbb{F}}_p)$)

- Blue: Centre size of $\mathcal{G}_2(\overline{\mathbb{F}}_p)$
- **Black**: p/12 (number of vertices in $\mathcal{G}_2(\overline{\mathbb{F}}_p)$)
- Green: discrete Gauß sampling (mean $1.8\log(p)$, standard deviation 0.38) of longest path lengths for a 3-regular graph with (p-1)/12 vertices where $p\equiv 1\ (\text{mod }12)\ (\text{thank you, Jonathan Love!})$

- Blue: Centre size of $\mathcal{G}_2(\overline{\mathbb{F}}_p)$
- **Black**: p/12 (number of vertices in $\mathcal{G}_2(\overline{\mathbb{F}}_p)$)
- Green: discrete Gauß sampling (mean $1.8 \log(p)$, standard deviation 0.38) of longest path lengths for a 3-regular graph with (p-1)/12 vertices where $p \equiv 1 \pmod{12}$ (thank you, Jonathan Love!)
- <u>Red</u>: discrepancy between the theoretically possible and the actual number of ways in which the furthest distance is at most the radius (thank you, Thomas Decru and Jonathan Komada Eriksen!)

Centre Count of S_2^p

Observations:

- Centre counts spread out across full range
- Higher centre counts for $p \equiv 3 \pmod{4}$ (higher radius values)
- Similar wave pattern as $\mathcal{G}_2(\overline{\mathbb{F}}_p)$ despite Frobenius-conjugate paths

Merci! — Questions (ou Résponses)?