Speeding up the computation
of group order of genus 2
curves over finite fields

Nicolas Thériault

Universidad de Santiago de Chile.

=] 5 = E DAy
N. Thériault (USACH) Group orders

Departamento de Matematica y Ciencia de la Computacién,

A quick announcement

Polynesian Journal of Mathematics

N. Thériault (USACH) 2/38

Why count points on hyperelliptic curves

They can be used for cryptographic applications.
@ They are interesting for cryptosystems based on the discrete logarithm problem.

@ You need a curve whose group order has a large prime factor, ideally the order is
prime.

@ You may want to select a curve completely at random (no special structure) and see
if it can be useful.

N. Thériault (USACH) Group orders 3/38

Why count points on hyperelliptic curves

They can be used for cryptographic applications.
@ They are interesting for cryptosystems based on the discrete logarithm problem.

@ You need a curve whose group order has a large prime factor, ideally the order is
prime.

@ You may want to select a curve completely at random (no special structure) and see
if it can be useful.

Because its a difficult to do...

N. Thériault (USACH) Group orders 3/38

Why count points on hyperelliptic curves

They can be used for cryptographic applications.
@ They are interesting for cryptosystems based on the discrete logarithm problem.

@ You need a curve whose group order has a large prime factor, ideally the order is
prime.

@ You may want to select a curve completely at random (no special structure) and see
if it can be useful.

Because its a difficult to do...

Because we end up learning more about curves and do some nice math...

N. Thériault (USACH) Group orders 3/38

Genus 2 hyperelliptic curves

In many “simple” groups, the discrete logarithm is easy to solve.

In finite fields and similar multiplicative structures, the difficulty of the discrete logarithm
is similar to the difficulty of factoring integers.

In elliptic and hyperelliptic curves of genus 2, there are no known “non-generic” efficient
algorithms (on classical computers) for the discrete logarithm.

For the same security, they require much smaller groups.

For genus 2 curves, the size of the field is half what it would be for an elliptic curve with
the same security (the group order is similar).

Group operations require similar times on elliptic and hyperelliptic curves, but
hyperelliptic ones require less energy.

N. Thériault (USACH) Group orders 4/38

Quantum computing

In theory, a quantum computer could solve the discrete logarithm problem in polynomial
time (and revolutionize computing, etc).

N. Thériault (USACH) Group orders 5/38

Quantum computing

In theory, a quantum computer could solve the discrete logarithm problem in polynomial
time (and revolutionize computing, etc).

In practice, we have to take things with a grain of salt:

@ There are few algorithms that are more efficient on quantum computers, Shor's
algorithm for integer factorization and discrete logarithms is one of them.

@ Not all quantum computers are fully programable (Shor is not always easily
applicable).

N. Thériault (USACH) Group orders 5/38

Quantum computing

In theory, a quantum computer could solve the discrete logarithm problem in polynomial
time (and revolutionize computing, etc).

In practice, we have to take things with a grain of salt:

@ There are few algorithms that are more efficient on quantum computers, Shor's
algorithm for integer factorization and discrete logarithms is one of them.

@ Not all quantum computers are fully programable (Shor is not always easily
applicable).

@ The record for integer factorization is at 26 bits.
@ The record for discrete logarithms in finite fields is at 18 bits.

@ The record for discrete logarithm in an elliptic curve is over F7 (3 bits).

For short and mid-term security applications, using the discrete logarithm problem may
still be reasonable, especially if it gives good performance.

N. Thériault (USACH) Group orders 5/38

Hyperelliptic curves

A non-singular hyperelliptic curve over a finite field F; of odd characteristic can be given
by an equation of the form

y2=f(X)=fde(X—9i)

where the 6; are distinct elements of Fgs such that f(x) is in Fg[x].

If dr = 2g + 1, the curve is in an imaginary model, and we can reduce to f4, = 1.

If dr = 2g + 2, the curve is real (purely real if none of the 0; are in Fy).
In both cases, g is the genus of the curve.

For each hyperelliptic curve we can define the Jacobian group: the divisor class group.

N. Thériault (USACH) Group orders 6/38

Point counting, elliptic curves

For an elliptic curve over the finite field F;, the Hasse-Weil theorem tells us the
characteristic polynomial of the Frobenius endomorphism is of the form

T°+aT+qg=0
with |a| < 2,/q, from which we find the group order satisfies

q+1-2/q<#E([F,) <q+1+2/q

Schoof’s algorithm computes the group order (counts the points) of the elliptic curve
through modular arithmetic:

@ Computes a mod ¢ for small ¢

o Studies the Frobenius in the ¢-torsion group

o Complexity: O(¢£**<log q) operations in Fy for a mod £.

@ Requires O(log q) primes £, to determine a, with £ € O(log q).

It is possible to remove a factor of £ using further techniques (Schoof-Elkies-Atkin).

N. Thériault (USACH) Group orders 7/38

Point counting, genus 2 curves

For genus 2 curves, we still talk about “point counting” even though “divisor counting”
would be more appropriate.

The Hasse-Weil theorem tells us the characteristic polynomial of the Frobenius satisfies
T4—|—aT3—|—bT2—|—aqT+q2:0

with |a| < 4,/q and |b| < 6q.

We can still work through modular arithmetic:
o Compute a mod ¢ and b mod ¢ for small ¢
o Study the Frobenius in the ¢-torsion group

o Complexity (not really correct, simplifying for now):
O(£°*< log q) operations in Ty to find both a mod £ and b mod .

@ Requires O(log q) primes £ to determine b, with £ € O(log q).

N. Thériault (USACH) Group orders 8/38

Gaudry and Schost, 2012

@ They used the genus 2 “division” polynomials of Cantor with various ideas to
improve the computation of the ¢-torsion group.

@ They obtain ¢-torsions for ¢ up to 31.

@ They compute modular information up to a given size, and then complete with
Pollard’s Kangaroo algorithm.

o For very small ¢, they obtain divisors of order ¢ and work with “liftings” from
mod £~ up to mod ¢*.

@ Requires to work in extension fields (the extension degree increases with k).
o In general each increase of k by 1 takes £*> more times the work.

@ For £ =2, they use the Kummer surface representation of the curve (pseudo-group)
to do the work (requires that all the Weierstrass points are Fq-rational).

@ They used systems of non-linear equations for £ = 3 and 5.

@ In total, it took close to 1.000.000 CPU hours to find a “good” curve'.

N. Thériault (USACH) Group orders 9/38

Some distributions

Assume we have a curve over F, with p of 127 or 128 bits

@ On average, 1 out of every ~ 175 curve has prime order.

> If you discard curves with small prime factors (for example £ =2, 3, 5, and 7), 1 out of
every =2 47 curve has prime order.

> This selection is easy to do and quite fast (< 5 minutes per curve, with an average
time around 1 — 2 minutes).

@ If you ask that the quadratic twist of the curve also has prime order, then 1 out of
every =~ 25500 curve is “good”.

> Of the curves without a small prime factor, 1 out of every = 6800 has prime order and
its quadratic twist too.

> If we extend the initial verification to the quadratic twist as well, 1 out of every
= 2500 curve is “good"”.

> In practice, requiring the quadratic twist to have prime order is not necessary: avoid a
specialized attack (when the validity of the point is not checked) that has been
generalized since, and both versions can be avoided by verifying the divisor satisfy the
curve equation (should always be done)

N. Thériault (USACH) Group orders 10/38

Point counting, powers of £

To obtain divisors of order £%, we begin with divisors of order =1 and compute a
pre-image of the multiplication by ¢, a “/-section”.

In general there are £?€ pre-images of the multiplication by £.
With one pre-image and the ¢-torsions, we know all pre-images.
Up to now, it was a hard problem to obtain one (or more) pre-image for £ > 2.

In general solving techniques tend to produce some false solutions.

N. Thériault (USACH) Group orders 11/38

bisections (with J. Miret and J. Pujolas, 2015)

@ Associates the existence of bisections to quadratic characters of u(x) evaluating at
the roots of f(x).

@ Computes 4 independent square roots and solves a 4 x 4 linear system (always
invertible).

@ Basically has the same complexity as doing the bisections on the Kummer surface
(used by Gaudry and Schost), but works directly on the curve model.

o Allows to manage cases where not all the 2-torsions are Fg-rational.
@ Includes an algorithm for real curves.

o Gave us the idea to look at point counting.

N. Thériault (USACH) Group orders 12/38

Trisections in hyperelliptic curves (with E. Riquelme, 2018)

@ We obtain an algorithm that allows to trisect without producing false solutions
(parasitic factors are cleaned out).

@ Given in a symbolic form, with fast evaluation.
@ Requires computing the roots of a polynomial of degree 81.

@ The dominant cost in the trisection comes from factorization.

N. Thériault (USACH) Group orders 13/38

Trisections in elliptic curves (with J. Pujolas, 2022)

@ We associate trisections with the existence (and computation) of two independent
cube roots and a few polynomial operations.

o Wee define trisectors: the cube roots obtained above (if they exist).

@ For each trisector, there are 3 possible choices, which correspond to the selection of
a cube root of unity.

@ Each choice of a pair of trisectors produces exactly one trisection.

N. Thériault (USACH) Group orders 14 /38

¢-sectors (with J. Miret and J. Pujolas)

Generalizes the previous result using Weil reciprocity.

Defines 2g-tuples which are all £-powers if and only if the divisor admits a ¢-section.

The polynomials defining the principal divisor associated to ¢-torsions are evaluated
at the divisor that we want to {-sect.

Produces a character associated to the existence of /-sectors.

Includes/explains the cases of bisections and trisections.

N. Thériault (USACH) Group orders 15/38

(-sections in genus 2 (with D. Cabarcas, J. Miret and J. Pujolas)

@ (-sectors allow to produce a non-linear system of equations (in 4 variables) with a
unique solution.

o We “add” extra variables: (ugly) rational functions of the first 4 variables.
© We use Weil reciprocity to extend the system (obtain more equations).

@ The new equations come from other /-torsion divisors, but the associated /-sectors
are fixed by the first 4 (the generators).

@ The system is linearized (new variables are produced for each product of variables).
This solving technique is a restriction of the Grobner basis technique.

o Gives a system of close to 4¢? variables that can be solved with linear algebra
techniques (5¢2 before removing known dependencies).

o Complexity: 4 factorizations of degree £ polynomials and O(£°) to solve the system
(all in an extension field)

N. Thériault (USACH) Group orders 16 /38

{-sections in point counting

@ The (-torsions are defined in an extension of degree d < ¢* — 1.

o In general, going from an extension of degree d to an extension of degree d - £
increases the depth of each generator of the ¢-Sylow subgroup by 1 (you can ¢-sect
once more).

@ There is one exception: going from degree d to an extension of degree d - ¢ can
increases the depth more: at least once, but sometimes (no always) more.

o With fast arithmetic, the cost of computations (solving the system), increases by a
factor of /.

@ For the factorization cost, wait a few slides... (also by a factor of ¢).

@ This makes it very interesting to look at £%-torsion for smaller values of £ rather than
increase to the next prime £.

N. Thériault (USACH) Group orders 17/38

Computing the ¢-Sylow (with J. Pujolas and E. Riquelme, 2023)

Instead of working with all divisors fo oredr £%, we want to use only a few or even only
one.

In general, choosing one at random can produce information loss.

An efficient algorithm was developed to find a basis of the {-Sylow subgroup over F
(IFk-rational divisors of order).

@ The basis gives all the information that could be obtained for the combination of all
the elements of the ¢-Sylow.

@ Allows to find divisors of higher order in the same field extension.

@ En general the “deeper” divisor gives the most information that can be extracted
from the ¢-Sylow.

N. Thériault (USACH) Group orders 18/38

.J o
o
Al G =

Some statistics

We considered 10,000 randomly selected curves, and extracted those with the full
3-torsion group (3488 such curves).

We computed the generators of the 3-Sylow, and indicated by 1 < n; < ny < n3 < ns the
depth of each generator.

Looking at the greatest difference in depths, we find:

ng — n1 number of curves percentage

0 3743 57.5%
1 1718 26.4%
2 590 9.1%
3 244 3.7%
4 149 2.3%
5 48 0.7%
6to8 20 0.3%

Note that except for ns — ni = 0 or 1, the probability that a divisor in the 3-Sylow has
maximal depth is below 10% (depends on ni, nz, n3 and ny).

However, not all generators work well for point counting...

N. Thériault (USACH) Group orders 20/38

Some statistics

In a second run, we looked at another set of 10,000 randomly selected curves, 3640 of
them with full torsion.

For each generator we check the order ¢?(D) + gD (which is multiplied by the first
unknown coefficient).

Let n; be the maximal “useful” depth:

nj —n1 number of curves percentage

0 3876 60.9%
1 2054 32.3%
2 395 6.2%
3 31 0.5%
4 4 0.1%

Divisor of maximal useful depth give more information on the coefficients of the
characteristic polynomial, but at basically the same cost (since they are in the same
extension). On average, we get an increase in the modulo by a factor of close to 71%.

The probability of picking a divisor of maximal useful depth at random is quite low.

N. Thériault (USACH) Group orders 21/38

Some statistics

for the 5-sylow, we used 1,400 randomly selected curves, and extracted 298 with the full

5-torsion group. For the greatest difference in depths, we find:

ng —ny number of curves percentage

0 646 58.6%
1 330 29.9%
2 93 8.4%
3 28 2.5%
4 5 0.5%

And for the greatest useful depth (290 curves with full torsion), we find:

nj —n1 number of curves percentage

0 813 73.2%
1 268 24.1%
2 29 2.6%

On average, we get an increase in the modulo by a factor of close to 86%.

N. Thériault (USACH) Group orders

22/38

Polynomial factorization, context

In the computation of the group order of a hyperelliptic curve of genus 2, a (very
significant) part of the algorithm requieres to compute ¢-th roots in a very large
extension of the base field.
For example, computing square roots in F 10608 =]FP3«216
or cube roots in F i3 = F 50

P

or fifth roots in F om0 = F ¢ .46
P

etc.

N. Thériault (USACH) Group orders

23/38

Timings

Factorization algorithms over finite fields have improved over the years, but mostly
concentrated on larger degree n and smaller fields (of g elements)...

o Cantor and Zassenhaus, 1981: O(n*"log, q)

o von zur Gathen and Shoup, 1992: O(n**¢) + O(n'™< log, q)

o Kaltofen and Shoup 1998: O(n®/?*<) + O(n**<log, q)

e Kaltofen and Shoup 1997: O(n**¢) + O(n'"(log, q)°*°)

Kedlaya and Umans, 2008: O(n*/**<) 4+ O(n**“log, q), si logq < n

We are looking at a very special case, with degree n = £ (fixed and small) over a field of
g* elements, q fixed but large and k increasing (quickly).

The dominant term becomes O(¢*"k log, q) is dominant, and has not changed (much)
since von zur Gathen and Shoup.

This term comes from computing x? mod f(x) or x(@ /2 mod f(x).

N. Thériault (USACH) Group orders 24 /38

1. p-powers (with R. Avanzi)

To compute the polynomial exponentiation in F «[x]/f(x), we take advantage of the g-th
power Frobenius and its powers.

This is similar to von zur Gathen and Shoup iterated Frobenius algorithm, but at a
subfield level.

If it can be done with a very efficient Frobenius operation in I, we can reduce the
factorization cost to
O(n*"“log k) + O(n*"“log q)

multiplications in [F .

As a result, going up to an extra degree ¢ extension to compute the next power-of-¢
torsion should cost (close to) an extra factor of £ for the factorization (linear growth).

N. Thériault (USACH) Group orders 25/38

2. Roots of unity (with J. von zur Gathen)

Equal degree factorization is based on the factorization
b(X)qd — b(x) = b(x) - (b(X)(qd—l)/2 _ 1) . (b(x)(qd—l)h n 1)

This splits the polynomial into (roughly) two halves, and if we repeat this O(log n) times
we can separate all the factors. This is because —1 is a primitive square root of unity.

If there is a primitive m-th root of unity, we can obtain an m-way split from just one
exponentiation (and a few more geds).

If we have “nice enough” primitive roots of unity, we can reduce the average number of
polynomial exponentiations required to isolate a factor of f(x).

In general this could speed-up equal-degree factorization by a factor of loglog g (but that
version is too general here).

For ¢-sections, we work in extensions with a basis of the full /-torsion group, so ¢ divides
d
q® —1..

We get the average number of exponentiations very close to 1 (best possible case).

N. Thériault (USACH) Group orders 26/38

3. Tower fields (in preparation)

The algorithm to compute group orders requires that we work in increasing extensions
over a base field (lifting), and the factorization algorithm has to compute the Frobenius
of various field elements (polynomial coefficients).

In general the field towers are of the form IE‘pMk.
Example of field tower: Fplmk with k increasing from 0 to 9.

We can choose the field towers to simplify both operations.

N. Thériault (USACH) Group orders 27/38

How to choose the field towers

We assume there is a primitive £-root of unity in F, (£2 if £ = 2)

First we look for a value of 3 such that z‘ — 3 is irreducible in F,[z].

Next we look for & = mf such that z" 4+ z + « is irreducible in Fq[z].

In general, fi(z) = 2" + 2 + a will then be irreducible for every k.

sketch of the proof: If 2t + 2 + mg is irreducible, then finding a factor of

gt + 2 + mp requires that we find a ¢-th root of mf3, but we made sure (8 didn't
have an ¢-th root.

Lifting to the next extension is then very easy (introducing some Os in the representation).

Applying the Frobenius is also cheaper than for extensions defined by polynomials of the
k
form 2™ + z + a.

N. Thériault (USACH) Group orders 28/38

Bringing everything together

Improvements for ¢-sections:
@ Replace the non-linear system of equation by a linear one
@ Direct construction of the system
@ Factor 4 polynomials of degree £ instead of one polynomial of degree ¢*

@ Specialized factorization algorithms (much faster)

With these improvements we can:

o Compute 2'-torsions in less time than Gaudry-Schost needed for 2'-torsions
(closer to our 2%°-torsions)

Compute 3-torsions in less time than Gaudry-Schost needed for 3%-torsions
(closer to our 3'-torsions)

Use 5%- and 7-torsions in all curves

Use 11%-torsions in some curves (in very rare cases we could use 113-torsions)

Avoid some computations of /-torsions

N. Thériault (USACH) Group orders 29/38

Bringing everything together

Record by Gaudry and Schost:
@ Needed = 1.000 hours for each complete order computation, with powers of 2, 3,
and 5, and /-torsions up to ¢ = 31.
@ Looked for group orders of the form 16 - prime (due to the form of the 2-torsions).

New record:
@ For each curve and each ¢*, the algorithm optimizes the choices of k (based on the
original extension for the ¢-torsions).
@ We can do complete group order computations in 85 to 100 hours, using powers of
2, 3,5, 7, and (sometimes) 11, and ¢-torsions up to £ = 13.

@ We can look for curves with prime order.

N. Thériault (USACH) Group orders 30/38

Bringing everything together
The curve
C:y=x"+x"+4x+1

over the field F,, with
p = 2% — 138727

has prime order

289480223093290488547091394457013244232
32691266574546583619137636570579192137 ,

with characteristic polynomial

T4+aT3+bT2—|—apT+p2:0
a = 6956615573005025511
b = 8146201980154773224422659378614446157 .

Based on divisors of orders 22°, 31, 5% 7% 11, and 13.

For most of the curves we have 2% or 22°, 31% or 311, 55 or 5%, 72 or 74, 11 or 112, and 13.

N. Thériault (USACH) Group orders 31/38

Can we say anything about asymptotic?

Yes!

=] F = = DA
N. Thériault (USACH) Group orders

Can we say anything about asymptotic?

o Working with {-torsions:
» Computing the (-torsion (Gaudry-Schost): O(£8+¢), approximated by ~ 0.0008¢° sec.
> Applying the Frobenius: O(¢*log q).
> Determining the coefficients: O(£°) for a full search, down to O(£°) with Baby Steps -
Giant Steps (¢2 values).

e Working with £*-torsions:
> First extension: d = O(¢£*) (pessimistic, most curves have d between ¢2 and ¢3).
For now, forget about generators of the ¢-Sylow (pessimistic).
Extension degree for £¥-tosions: O(£K+3)
Factorization: O Z”“ log g 9) approximated by = 0.0003¢4+4 log g sec.
Solving the system O(£¥*9), approximated by = 0.00012¢*° sec.
Frobenius computatlons O(t++3log q).
» Determining the coefficients: O(¢£k+*) with Baby Steps - Giant Steps.

o Pollard Kangaroo:

> a completely known (modulus greater than the interval length), missing factor of N on
the modulus of b.
» Kangaroo: O(NO%5+€), approximated by =~ +/N/20,000 sec.

vVvyyvyYVvYyy

The timing estimates (in seconds) are based on implementations (Gaudry-Schost and
ours).

N. Thériault (USACH) Group orders 33/38

Can we say anything about asymptotic?

For each field size from 16 bits to 256 bits (groups of 32 bits to 512 bits), we ran four
series for which we computed the largest prime £ required to compute the complete group
order and the estimated total time used:

Series 1 and 3: using only modular information to compute the coefficients

@ Series 2 and 4: using Pollard's Kangaroo to complete the computation of b

Series 1 and 2: using only /-torsions

Series 3 and 4: combining with £*-torsions

N. Thériault (USACH) Group orders 34 /38

Largest prime used compared to log g

Largest prime used / # bits

100 200 300 400 500
Series1 Series2 Series3 ——Series4
= DA
N. Thériault (USACH) Group orders

Total time compared to (log q)’

Time / # bits*7
100 200 300 400 500
Series1 Series2 Series3 Series4
= 9ae
N. Thériault (USACH) [

Total time compared to (log q)7, logarithmic scale

Log (Time / (# bits)*7) (scaled)

T

100 200 300 400 500
— - a

Can we say anything about asymptotic?

o In all cases, the complexity is O(log g)"™).

@ The constant hidden in the O-notation changes dramatically.

@ Using Pollard’s Kangaroo to complete the computation of b can reduce the total
time by a factor between 3,000 and 20,000 at cryptographic sizes.

@ That saving does not keep up at larger sizes (the exponential growth of the
Kangaroos limits the reduction of the modulo we can have).

o It's unlikely that we can get real asymptotic improvements from this idea.

@ Using ¢*-torsions reduces the total time by a factor between 20,000 and 160,000 at
cryptographic sizes.

@ That saving seems to hold at larger sizes, and asymptotic arguments may be
possible...

@ 20,000 = 1402, so each savings is comparable to reducing by two powers of log g,
and four powers of log g when combining both ideas (but that's really a change in
the constant, not the asymptotic form).

2256

@ For groups of up to elements, combining the two approaches saves a factor

close to 0.5 - 10°.

N. Thériault (USACH) Group orders 38/38

