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Z,-extensions

p = (odd) prime
Cpr = primitive p"th root of unity
Q(Cp) - @(sz) C "'CQ(<pn+1) C -

Take degree p — 1 off each field:
QCQ1CQ2C"'CQnC"'C@oo
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Z,-extensions

e p = (odd) prime

@ (pn = primitive p"th root of unity

) Q(CP) C @(sz) C "'CQ(éan) (G

@ Take degree p — 1 off each field:
QCQCcQC--CQC-CQx

o Gal(Q,/Q) ~ Z/p"Z
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Z,-extensions

e p = (odd) prime

@ (pn = primitive p"th root of unity

) Q(CP) C @(sz) C "'CQ(éan) (G

@ Take degree p — 1 off each field:
QCcQrCcQcCc---CcQ,C - CQx

o Gal(Q,/Q) ~ Z/p"Z

o Lift to a number field K:

K=KiCKi=KQ1C---CK,C - CKy
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Z,-extensions

e p = (odd) prime
@ (pn = primitive p"th root of unity

) Q(Cp) C @(sz) C ”'CQ(éan) (G

@ Take degree p — 1 off each field:
QCQ1C@2C"'CQnC"'C@oo

e Gal(Q,/Q) ~7Z/p"Z

@ Lift to a number field K:

K=KiCKi=KQ1C---CK,C - CKy

e Gal(K,/Koy) ~Z/p"Z, Gal(Kso/Ko) ~ Zp = p-adic integers

VAN EE L W TR D ERIEREWII T he First Level of Zp-extensions and Compat August 18, 2025 2/21



Iwasawa’s Theorem

@ A, = Sylow p-subgroup of ideal class group of K,
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@ There exist nyp and integers A, u > 0 and v such that

Al = gt

for all n > ng.
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Iwasawa’s Theorem

@ A, = Sylow p-subgroup of ideal class group of K,
@ There exist nyp and integers A, u > 0 and v such that

Al = gt

for all n > ng.

e Usually (conjecturally always) p = 0.
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@ A, = Sylow p-subgroup of ideal class group of K,
@ There exist nyp and integers A, u > 0 and v such that

Al = gt

for all n > ng.
e Usually (conjecturally always) p = 0.
@ What can be said about A 7
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Iwasawa’s Theorem

A, = Sylow p-subgroup of ideal class group of K|,
@ There exist nyp and integers A, u > 0 and v such that

Al = gt

for all n > ng.

Usually (conjecturally always) p = 0.
What can be said about A 7
@ When K is imaginary quadratic, Up>0A, =~ (QP/ZP)’\.
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Iwasawa’s Theorem

A, = Sylow p-subgroup of ideal class group of K|,
@ There exist nyp and integers A, u > 0 and v such that

Al = gt

for all n > ng.

Usually (conjecturally always) p = 0.

What can be said about A ?

When K is imaginary quadratic, Up>0A, ~ (QP/ZP)’\.
What can be said about A, for n < ng ?
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Imaginary Quadratic Fields

K = imaginary quadratic field in which 3 does not split
p=3
@ Suppose Ag is cyclic 3
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K = imaginary quadratic field in which 3 does not split
p=3

@ Suppose Ag is cyclic 3

@ A; is one of the following:
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Imaginary Quadratic Fields

K = imaginary quadratic field in which 3 does not split
p=3

@ Suppose Ag is cyclic 3

@ A; is one of the following:

@ 3x3x3
@ 3%t x 3% with s > 1
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Imaginary Quadratic Fields

K = imaginary quadratic field in which 3 does not split
p=3

@ Suppose Ag is cyclic 3

@ A; is one of the following:

@ 3x3x3

0 35T x 3% with s > 1

0 35Tl x 35t withs > 1
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Imaginary Quadratic Fields

K = imaginary quadratic field in which 3 does not split
p=3

@ Suppose Ag is cyclic 3

@ A; is one of the following:

@ 3x3x3

0 35T x 3% with s > 1

0 35Tl x 35t withs > 1

o9
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Imaginary Quadratic Fields

K = imaginary quadratic field in which 3 does not split
p=3

@ Suppose Ag is cyclic 3

@ A; is one of the following:

@ 3x3x3

0 35T x 3% with s > 1

0 35Tl x 35t withs > 1

o9

9 is equivalent to A =1
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The general case

@ Suppose K = imaginary quadratic field in which p does not split
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The general case
@ Suppose K = imaginary quadratic field in which p does not split

@ Assume Ay is cyclic of order p™ with m > 1.
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The general case
@ Suppose K = imaginary quadratic field in which p does not split
@ Assume Ay is cyclic of order p™ with m > 1.

@ Theorem. A; is one of the following:

(Z/p™Z)P.

(Z/p™Z) x (2/p*'Z)° x (2/p°Z)P 2
withm<sand1<a<p-1.

(Z/p™Z) x (2/p*'2)° x (2/p°Z)P 1"
with0<s<mand0<b<p—2 andwithb£p—-2ifm=s+1.
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@ The norm A; — Ag is surjective.
e G = Gal(K1/Kp) cyclic of order p. Write G = (o).
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Main Ingredients

@ The natural map Ap — Aj is injective.
@ The norm A; — Ag is surjective.
e G = Gal(K1/Kp) cyclic of order p. Write G = (o).

@ Zp|G] acts on Ay, where Z, = p-adic integers
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Main Ingredients

The natural map Ag — Aj is injective.

The norm A; — Ag is surjective.

G = Gal(K1/Ko) cyclic of order p. Write G = (o).
Zp[G] acts on Ay, where Z, = p-adic integers

AC = Ay
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Main Ingredients

The natural map Ag — Aj is injective.

The norm A; — Ag is surjective.

G = Gal(K1/Ko) cyclic of order p. Write G = (o).
Zp[G] acts on Ay, where Z, = p-adic integers

AC = Ay

Ao cyclic = Ay ~ Z,[G]/! for some ideal | of Z,[G].
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Theorem

Let p be an odd prime and let G be the cyclic group of order p. Let Z,[G]
be the p-adic group ring of G. If A1 is a non-trivial finite cyclic
Zp[G]-module such that the Tate cohomology group HO(G,Ay) =0, then
A1 is isomorphic as an abelian group to one of the groups listed in the
previous theorem.
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o Let ( = (p.
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o Let ( = (p.
o mr=(—1
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o Let ( = (p.
oenmr=(—1.
@ The non-zero ideals of Z,[(] have the form 7"Z,[(].
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The non-zero ideals of Z,[(] have the form ©"Z,|[(].
Zp[Cl/(m) = Fp

® 6 o6 o
3
Il
e
\
[y
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Reiner’s Classification of Ideals of Z,[G]

Zp|o] — Lp

b

Zp[(] — Fp
mod 7

where € : Zy[o] = Zp is the map > aj0’ — > a; and ¢(0) = (,.
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Reiner’s Classification of Ideals of Z,[G]|

Zp|o] — Lp

b

Zp[(] — Fp
mod 7

where € : Zy[o] = Zp is the map > aj0’ — > a; and ¢(0) = (,.

Zplo] = {(x,y) € Zp[¢] X Zp | ¢(x) mod 7 = €(y) mod p in Fp}.
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Zp[o] —— Lp

|+ [ ot

Zp[c] I Fp
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Zp[o] —— Lp

|+ [ ot

Zp[c] I Fp

om=(p—1
e N=1+o+0%>+ - +oP!
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Zp[o] —— Lp

|+ [ ot

Zp[c] I Fp

om=(p—1
e N=1+o+0%>+ - +oP!

@ The action of Zp[o] is given by o(x,y) = (¢x,y). Therefore,
(o0 —1)(x,y) = (7x,0) and N(x,y) = (0, py).
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Reiner: Let / be an ideal of finite index greater than 1 in Z,[G] such that
IN(Z[G]/1)| = p™ > 1. Then there are

(a) an integer r > 1,
(b) an integer b € p™Z,/p™ 17,
such that
I = Zplo](", b) + Zp(0, ™).
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Reiner: Let / be an ideal of finite index greater than 1 in Z,[G] such that
IN(Z[G]/1)| = p™ > 1. Then there are

(a) an integer r > 1,
(b) an integer b € p™Z,/p™ 17,
such that
I = Zplo](", b) + Zp(0, ™).

Moreover,
|Zp[‘7]//’ = Pr+m-
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I = Zp[o)(x" . b) + Zp(0, ™).

VAN EE L T W TR W D ERIEREWII T he First Level of Zp-extensions and Compat August 18, 2025 12 /21



I = Zp[o)(x" . b) + Zp(0, ™).

o Recall: AS = Ag and Ag = N(A;).
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I = Zp[o)(x" . b) + Zp(0, ™).

o Recall: AS = Ag and Ag = N(A;).

(Zplo]/1)® = (N) (Zplo]/1) <= b#0 (mod p™*?).
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I = Zp[o)(x" . b) + Zp(0, ™).

o Recall: AS = Ag and Ag = N(A;).
(Zplo)/1)6 = (N) (Zlo]/1) <= b£ 0 (mod p™*).
@ The ideals that yield possibilities for A; have the form
| = Zplo](7", bip™) + Zp(0, p™ 1), with r > 1 and 1 < by < p— 1.

@ Analyzing the structure of Z,[G]// yields the theorem.
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Heuristics

@ The following are equivalent:
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Heuristics

@ The following are equivalent:

o A=1
e Ap and A;j are non-trivial cyclic
o |Ai]/|Ao] = p
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Heuristics

@ The following are equivalent:

o A=1
e Ap and A;j are non-trivial cyclic
o |Ai]/|Ao] = p

@ The Ellenberg-Jain-Venkatesh heuristics predict that the probability
the lwasawa invariant A =1 is

p [ -p7).
j=2

August 18, 2025 13 /21
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Heuristics

@ The following are equivalent:

o A=1
e Ap and A;j are non-trivial cyclic
o |Ai]/|Ao] = p

@ The Ellenberg-Jain-Venkatesh heuristics predict that the probability
the lwasawa invariant A =1 is

p [ -p7).
j=2

@ The Cohen-Lenstra heuristics predict that the probability Ag is cyclic
is
e .
pil-p ) [I-p7).

J=1
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@ We know that

A =1<= 3Im > 1 such that Ay~ Z/p™Z and A; ~ Z/p™ 7.
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@ We know that

A =1<= 3Im > 1 such that Ay~ Z/p™Z and A; ~ Z/p™ 7.

@ The conditional probability that A = 1 given that Ag is cyclic
equals
the conditional probability that A; is cyclic given that Ag is cyclic.
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@ We know that

A =1<= 3Im > 1 such that Ay~ Z/p™Z and A; ~ Z/p™ 7.

@ The conditional probability that A = 1 given that Ag is cyclic
equals
the conditional probability that A; is cyclic given that Ag is cyclic.

@ Combining the CL and EJV heuristics yields

o Prob(\ = 1) p-1
Prob(A = 1| Ap is cyclic) = Prob(Ag is cyclic) - p
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N
EJV from CL

A different approach

VAN EE L T W TR D ERIEREWII T he First Level of Zp-extensions and Compat August 18, 2025 15 /21



]
EJV from CL

A different approach

o If Ag is cyclic, we know the possibilities for A;.

@ Weight the possibilities for A; by the inverse of the sizes of their
automorphism groups as Zp[o]-modules.
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]
EJV from CL

A different approach

o If Ag is cyclic, we know the possibilities for A;.

@ Weight the possibilities for A; by the inverse of the sizes of their
automorphism groups as Zp[o]-modules.

@ Recall I can have the form Z,[c](7", bip™) + Zp(0, p™) with
1 S b1 S p— 1.
@ The automorphism group of Z[o]/1 is (Zy[o]/1)*.
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]
EJV from CL

A different approach

o If Ag is cyclic, we know the possibilities for A;.

@ Weight the possibilities for A; by the inverse of the sizes of their
automorphism groups as Zp[o]-modules.

@ Recall I can have the form Z,[c](7", bip™) + Zp(0, p™) with
1 S b1 S p— 1.
@ The automorphism group of Z[o]/1 is (Zy[o]/1)*.

o If Zy[o]/! has order p™*", the order of its automorphism group is
(,D _ 1)pm+r—1_
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e If Zy[o]/! has order p™*", the order of its automorphism group is
(P _ 1)pm+r—1-
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e If Zy[o]/! has order p™*", the order of its automorphism group is
(P _ 1)pm+r—1-
@ There are p — 1 ideals /| with Z,[c]/! of order p™*":

| = Zplo)(n", bip™) + Zp(0, p™) with 1 < by < p—1.
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e If Zy[o]/! has order p™*", the order of its automorphism group is

(P _ 1)pm+r—1-
@ There are p — 1 ideals /| with Z,[c]/! of order p™*":

| = Zplo)(n", bip™) + Zp(0, p™) with 1 < by < p—1.

o
o0
> o = Y :
Aut(A1)] —1)prtm=1 = (p—1)pm-1
A1 such that Ag cyclic p™ | ( 1)‘ r=1 (P )P (P )'D
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e If Zy[o]/! has order p™*", the order of its automorphism group is
(P _ 1)pm+r—1-
@ There are p — 1 ideals /| with Z,[c]/! of order p™*":

| = Zplo)(n", bip™) + Zp(0, p™) with 1 < by < p—1.

1 > -1 1
2 [Aut(Ay)] ; (p—1p ™™t~ (p—1)pm T

A1 such that Ag cyclic p™

@ The p — 1 in the numerator comes from the p — 1 choices for b;.
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@ There are p — 1 ideals that yield A; cyclic of order p™*1.
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@ There are p — 1 ideals that yield A; cyclic of order p™*1.

@ The automorphism groups have order (p — 1)p™.
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|
@ There are p — 1 ideals that yield A; cyclic of order p™*1.
@ The automorphism groups have order (p — 1)p™.

@ We obtain the heuristic prediction

Prob(A; is cyclic | Ag cyclic p™)
Total weight of cyclic A;

~ Total weight of all A; with Ag cyclic p™
_(p=1)/(p—1)p"
1/(p—1)pm~1
p—1

p
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|
@ There are p — 1 ideals that yield A; cyclic of order p™*1.
@ The automorphism groups have order (p — 1)p™.

@ We obtain the heuristic prediction

Prob(A; is cyclic | Ag cyclic p™)
Total weight of cyclic A;

~ Total weight of all A; with Ag cyclic p™
_(p=1)/(p—1)p"
1/(p—1)pm~1
p—1

p

@ Therefore, the EJV heuristics for A = 1 are compatible with the CL
heuristics.
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This also indicates that all the possible groups listed in the theorem should
occur.
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# of d 9 9x3 |3x3x3| 9x9 | 27x9 | 27 x27
3td 18315 | .6669 | .1118 | .1104 | .0728 | .0267 | .0079
3|d 12096 | .6685 | .1132 | .1122 | .0703 | .0227 .00901
Predicted 6667 | 1111 A111 .0741 | .0247 .0082
81 x27 |81 x81[3°%x3%[3°x3|30x3°
.0023 .0008 .0003 .0001 .0001
.0027 .0010 .0003 .0000 .0000
.0027 .0009 .0003 .0001 .0000

Table: Ag is cyclic of order 3. Distribution of 3-parts of A; for fundamental
discriminants of the form —1 — 3; for 10% < j < 10° 4 2 x 105 (the line 3{ d and
of the form —3; for 108 < j < 10° + 2 x 10° (the line 3| d).
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Number of d 25 25 x5 | 25 x5 x5 | 25 x5 x5x5
—2 —b5k 588 .8078 | .1582 .0272 .0051
—3 -5k 561 7843 | 1765 .0196 .0143
—bk 482 .8050 | .1515 .0353 .0083
Predicted .8000 | .1600 .0320 .0048

Ex5x5x5x5 | 25 x25 x5 x5 | 25 x25 x25 x5 | 25 x 25 x 25 x 25
.0000 .0017 .0000 .0000
.0018 .0018 .0000 .0018
.0000 .0000 .0000 .0000
.0016 .0013 .0003 .0001

Table: Ag is cyclic of order 5. Distribution of 5-parts of A; for fundamental
discriminants of the form —2 — 5k, —3 — 5k, and —5k for 10 < k < 10° + 10%.
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Mauruuru
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