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Zp-extensions

p = (odd) prime

ζpn = primitive pnth root of unity

Q(ζp) ⊂ Q(ζp2) ⊂ · · ·⊂Q(ζpn+1) ⊂ · · ·
Take degree p − 1 off each field:
Q ⊂ Q1 ⊂ Q2 ⊂ · · · ⊂ Qn ⊂ · · · ⊂ Q∞
Gal(Qn/Q) ' Z/pnZ
Lift to a number field K :

K = K0 ⊂ K1 = KQ1 ⊂ · · · ⊂ Kn ⊂ · · · ⊂ K∞

Gal(Kn/K0) ' Z/pnZ, Gal(K∞/K0) ' Zp = p-adic integers
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Iwasawa’s Theorem

An = Sylow p-subgroup of ideal class group of Kn

There exist n0 and integers λ, µ ≥ 0 and ν such that

|An| = pλn+µpn+ν

for all n ≥ n0.

Usually (conjecturally always) µ = 0.

What can be said about λ ?

When K is imaginary quadratic, ∪n≥0An ' (Qp/Zp)λ.

What can be said about An for n < n0 ?
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Imaginary Quadratic Fields

K = imaginary quadratic field in which 3 does not split
p = 3

Suppose A0 is cyclic 3

A1 is one of the following:

3× 3× 3

3s+1 × 3s with s ≥ 1

3s+1 × 3s+1, with s ≥ 1

9

9 is equivalent to λ = 1
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The general case

Suppose K = imaginary quadratic field in which p does not split

Assume A0 is cyclic of order pm with m ≥ 1.

Theorem. A1 is one of the following:

(Z/pmZ)p .

(
Z/pm−1Z

)
×
(
Z/ps+1Z

)a × (Z/psZ)p−1−a

with m ≤ s and 1 ≤ a ≤ p − 1.

(
Z/pm+1Z

)
×
(
Z/ps+1Z

)b × (Z/psZ)p−1−b

with 0 ≤ s < m and 0 ≤ b ≤ p − 2, and with b 6= p − 2 if m = s + 1.
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Main Ingredients

The natural map A0 → A1 is injective.

The norm A1 → A0 is surjective.

G = Gal(K1/K0) cyclic of order p. Write G = 〈σ〉.
Zp[G ] acts on A1, where Zp = p-adic integers

AG
1 = A0

A0 cyclic =⇒ A1 ' Zp[G ]/I for some ideal I of Zp[G ].
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Theorem

Let p be an odd prime and let G be the cyclic group of order p. Let Zp[G ]
be the p-adic group ring of G. If A1 is a non-trivial finite cyclic
Zp[G ]-module such that the Tate cohomology group Ĥ0(G ,A1) = 0, then
A1 is isomorphic as an abelian group to one of the groups listed in the
previous theorem.
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Let ζ = ζp.

π = ζ − 1.

The non-zero ideals of Zp[ζ] have the form πrZp[ζ].

Zp[ζ]/(π) ' Fp
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Reiner’s Classification of Ideals of Zp[G ]

Zp[σ]
ε−−−−→ Zpyφ

y mod p

Zp[ζ] −−−−−→
mod π

Fp

where ε : Zp[σ]→ Zp is the map
∑

aiσ
i 7→

∑
ai and φ(σ) = ζp.

Zp[σ] ' {(x , y) ∈ Zp[ζ]× Zp | φ(x) mod π = ε(y) mod p in Fp}.
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Zp[σ]
ε−−−−→ Zpyφ

y mod p

Zp[ζ] −−−−−→
mod π

Fp

π = ζp − 1

N = 1 + σ + σ2 + · · ·+ σp−1

The action of Zp[σ] is given by σ(x , y) = (ζx , y). Therefore,
(σ − 1)(x , y) = (πx , 0) and N(x , y) = (0, py).
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Reiner: Let I be an ideal of finite index greater than 1 in Zp[G ] such that
|N(Z[G ]/I )| = pm > 1. Then there are

(a) an integer r ≥ 1,

(b) an integer b ∈ pmZp/p
m+1Zp

such that
I = Zp[σ](πr , b) + Zp(0, pm+1).

Moreover,
|Zp[σ]/I | = pr+m.
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I = Zp[σ](πr , b) + Zp(0, pm+1).

Recall: AG
1 = A0 and A0 = N(A1).

(Zp[σ]/I )G = (N) (Zp[σ]/I )⇐⇒ b 6≡ 0 (mod pm+1).

The ideals that yield possibilities for A1 have the form

I = Zp[σ](πr , b1p
m) + Zp(0, pm+1), with r ≥ 1 and 1 ≤ b1 ≤ p − 1.

Analyzing the structure of Zp[G ]/I yields the theorem.
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Heuristics

The following are equivalent:

λ = 1
A0 and A1 are non-trivial cyclic
|A1|/|A0| = p

The Ellenberg-Jain-Venkatesh heuristics predict that the probability
the Iwasawa invariant λ = 1 is

p−1
∞∏
j=2

(1− p−j).

The Cohen-Lenstra heuristics predict that the probability A0 is cyclic
is

p−1(1− p−1)−2
∞∏
j=1

(1− p−j).
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We know that

λ = 1⇐⇒ ∃m ≥ 1 such that A0 ' Z/pmZ and A1 ' Z/pm+1Z.

The conditional probability that λ = 1 given that A0 is cyclic
equals
the conditional probability that A1 is cyclic given that A0 is cyclic.

Combining the CL and EJV heuristics yields

Prob(λ = 1 |A0 is cyclic) =
Prob(λ = 1)

Prob(A0 is cyclic)
=

p − 1

p
.

Larry Washington (joint with Debanjana Kundu) (University of Maryland)The First Level of Zp -extensions and Compatibility of HeuristicsAugust 18, 2025 14 / 21



We know that

λ = 1⇐⇒ ∃m ≥ 1 such that A0 ' Z/pmZ and A1 ' Z/pm+1Z.

The conditional probability that λ = 1 given that A0 is cyclic
equals
the conditional probability that A1 is cyclic given that A0 is cyclic.

Combining the CL and EJV heuristics yields

Prob(λ = 1 |A0 is cyclic) =
Prob(λ = 1)

Prob(A0 is cyclic)
=

p − 1

p
.

Larry Washington (joint with Debanjana Kundu) (University of Maryland)The First Level of Zp -extensions and Compatibility of HeuristicsAugust 18, 2025 14 / 21



We know that

λ = 1⇐⇒ ∃m ≥ 1 such that A0 ' Z/pmZ and A1 ' Z/pm+1Z.

The conditional probability that λ = 1 given that A0 is cyclic
equals
the conditional probability that A1 is cyclic given that A0 is cyclic.

Combining the CL and EJV heuristics yields

Prob(λ = 1 |A0 is cyclic) =
Prob(λ = 1)

Prob(A0 is cyclic)
=

p − 1

p
.

Larry Washington (joint with Debanjana Kundu) (University of Maryland)The First Level of Zp -extensions and Compatibility of HeuristicsAugust 18, 2025 14 / 21



EJV from CL

A different approach

If A0 is cyclic, we know the possibilities for A1.

Weight the possibilities for A1 by the inverse of the sizes of their
automorphism groups as Zp[σ]-modules.

Recall I can have the form Zp[σ](πr , b1p
m) + Zp(0, pm) with

1 ≤ b1 ≤ p − 1.

The automorphism group of Zp[σ]/I is (Zp[σ]/I )×.

If Zp[σ]/I has order pm+r , the order of its automorphism group is
(p − 1)pm+r−1.
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If Zp[σ]/I has order pm+r , the order of its automorphism group is
(p − 1)pm+r−1.

There are p − 1 ideals I with Zp[σ]/I of order pm+r :

I = Zp[σ](πr , b1p
m) + Zp(0, pm) with 1 ≤ b1 ≤ p − 1.

∑
A1 such that A0 cyclic pm

1

|Aut(A1)|
=
∞∑
r=1

p − 1

(p − 1)pr+m−1 =
1

(p − 1)pm−1
.

The p − 1 in the numerator comes from the p − 1 choices for b1.
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There are p − 1 ideals that yield A1 cyclic of order pm+1.

The automorphism groups have order (p − 1)pm.

We obtain the heuristic prediction

Prob(A1 is cyclic |A0 cyclic pm)

=
Total weight of cyclic A1

Total weight of all A1 with A0 cyclic pm

=
(p − 1)/(p − 1)pm

1/(p − 1)pm−1

=
p − 1

p
.

Therefore, the EJV heuristics for λ = 1 are compatible with the CL
heuristics.
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This also indicates that all the possible groups listed in the theorem should
occur.
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# of d 9 9×3 3×3×3 9×9 27×9 27×27

3 - d 18315 .6669 .1118 .1104 .0728 .0267 .0079
3 | d 12096 .6685 .1132 .1122 .0703 .0227 .0091

Predicted .6667 .1111 .1111 .0741 .0247 .0082

81× 27 81× 81 35 × 34 35 × 35 36 × 35

.0023 .0008 .0003 .0001 .0001

.0027 .0010 .0003 .0000 .0000

.0027 .0009 .0003 .0001 .0000

Table: A0 is cyclic of order 3. Distribution of 3-parts of A1 for fundamental
discriminants of the form −1− 3j for 106 ≤ j ≤ 106 + 2× 105 (the line 3 - d and
of the form −3j for 106 ≤ j ≤ 106 + 2× 105 (the line 3 | d).
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Number of d 25 25× 5 25× 5× 5 25× 5× 5× 5

−2− 5k 588 .8078 .1582 .0272 .0051
−3− 5k 561 .7843 .1765 .0196 .0143
−5k 482 .8050 .1515 .0353 .0083

Predicted .8000 .1600 .0320 .0048

5×5×5×5×5 25× 25× 5× 5 25× 25× 25× 5 25× 25× 25× 25

.0000 .0017 .0000 .0000

.0018 .0018 .0000 .0018

.0000 .0000 .0000 .0000

.0016 .0013 .0003 .0001

Table: A0 is cyclic of order 5. Distribution of 5-parts of A1 for fundamental
discriminants of the form −2− 5k , −3− 5k , and −5k for 106 ≤ k < 106 + 104.
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