The First Level of \mathbb{Z}_p -extensions and Compatibility of Heuristics

Larry Washington (joint with Debanjana Kundu)

University of Maryland

August 18, 2025

René 25

Université de la Polynésie Française

Fare ha'api'ira'a tuatoru nō Pōrinetia farāni

• p = (odd) prime

- *p* = (odd) prime
- $\zeta_{p^n} = \text{primitive } p^n \text{th root of unity}$

- *p* = (odd) prime
- ζ_{p^n} = primitive p^n th root of unity
- $\mathbb{Q}(\zeta_p) \subset \mathbb{Q}(\zeta_{p^2}) \subset \cdots \subset Q(\zeta_{p^{n+1}}) \subset \cdots$

- *p* = (odd) prime
- ζ_{p^n} = primitive p^n th root of unity
- $\mathbb{Q}(\zeta_p) \subset \mathbb{Q}(\zeta_{p^2}) \subset \cdots \subset \mathbb{Q}(\zeta_{p^{n+1}}) \subset \cdots$
- ullet Take degree p-1 off each field:

$$\mathbb{Q} \subset \mathbb{Q}_1 \subset \mathbb{Q}_2 \subset \cdots \subset \mathbb{Q}_n \subset \cdots \subset \mathbb{Q}_\infty$$

- *p* = (odd) prime
- ζ_{p^n} = primitive p^n th root of unity
- $\mathbb{Q}(\zeta_p) \subset \mathbb{Q}(\zeta_{p^2}) \subset \cdots \subset \mathbb{Q}(\zeta_{p^{n+1}}) \subset \cdots$
- ullet Take degree p-1 off each field:

$$\mathbb{Q} \subset \mathbb{Q}_1 \subset \mathbb{Q}_2 \subset \cdots \subset \mathbb{Q}_n \subset \cdots \subset \mathbb{Q}_\infty$$

• $\operatorname{\mathsf{Gal}}(\mathbb{Q}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n\mathbb{Z}$

- *p* = (odd) prime
- ζ_{p^n} = primitive p^n th root of unity
- $\mathbb{Q}(\zeta_p) \subset \mathbb{Q}(\zeta_{p^2}) \subset \cdots \subset Q(\zeta_{p^{n+1}}) \subset \cdots$
- Take degree p-1 off each field: $\mathbb{Q} \subset \mathbb{Q}_1 \subset \mathbb{Q}_2 \subset \cdots \subset \mathbb{Q}_n \subset \cdots \subset \mathbb{Q}_{\infty}$
- $\operatorname{\mathsf{Gal}}(\mathbb{Q}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n\mathbb{Z}$
- Lift to a number field *K*:

$$K = K_0 \subset K_1 = K\mathbb{Q}_1 \subset \cdots \subset K_n \subset \cdots \subset K_\infty$$

- *p* = (odd) prime
- ζ_{p^n} = primitive p^n th root of unity
- $\mathbb{Q}(\zeta_p) \subset \mathbb{Q}(\zeta_{p^2}) \subset \cdots \subset \mathbb{Q}(\zeta_{p^{n+1}}) \subset \cdots$
- Take degree p-1 off each field:

$$\mathbb{Q} \subset \mathbb{Q}_1 \subset \mathbb{Q}_2 \subset \cdots \subset \mathbb{Q}_n \subset \cdots \subset \mathbb{Q}_{\infty}$$

- $\operatorname{\mathsf{Gal}}(\mathbb{Q}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n\mathbb{Z}$
- Lift to a number field K:

$$K = K_0 \subset K_1 = K\mathbb{Q}_1 \subset \cdots \subset K_n \subset \cdots \subset K_\infty$$

• $\operatorname{\mathsf{Gal}}(K_n/K_0) \simeq \mathbb{Z}/p^n\mathbb{Z}, \qquad \operatorname{\mathsf{Gal}}(K_\infty/K_0) \simeq \mathbb{Z}_p = p\text{-adic integers}$

4□ > 4周 > 4 = > 4 = > = 90

• $A_n = \text{Sylow } p\text{-subgroup of ideal class group of } K_n$

- $A_n = \text{Sylow } p\text{-subgroup of ideal class group of } K_n$
- There exist n_0 and integers $\lambda, \mu \geq 0$ and ν such that

$$|A_n| = p^{\lambda n + \mu p^n + \nu}$$

- $A_n = \text{Sylow } p\text{-subgroup of ideal class group of } K_n$
- There exist n_0 and integers $\lambda, \mu \geq 0$ and ν such that

$$|A_n| = p^{\lambda n + \mu p^n + \nu}$$

for all $n \geq n_0$.

• Usually (conjecturally always) $\mu = 0$.

- $A_n = \text{Sylow } p\text{-subgroup of ideal class group of } K_n$
- There exist n_0 and integers $\lambda, \mu \geq 0$ and ν such that

$$|A_n| = p^{\lambda n + \mu p^n + \nu}$$

- Usually (conjecturally always) $\mu = 0$.
- What can be said about λ ?

- $A_n = \text{Sylow } p\text{-subgroup of ideal class group of } K_n$
- There exist n_0 and integers $\lambda, \mu \geq 0$ and ν such that

$$|A_n|=p^{\lambda n+\mu p^n+\nu}$$

- Usually (conjecturally always) $\mu = 0$.
- What can be said about λ ?
- When K is imaginary quadratic, $\bigcup_{n\geq 0}A_n\simeq (\mathbb{Q}_p/\mathbb{Z}_p)^{\lambda}$.

- $A_n = \text{Sylow } p\text{-subgroup of ideal class group of } K_n$
- There exist n_0 and integers $\lambda, \mu \geq 0$ and ν such that

$$|A_n| = p^{\lambda n + \mu p^n + \nu}$$

- Usually (conjecturally always) $\mu = 0$.
- What can be said about λ ?
- When K is imaginary quadratic, $\bigcup_{n\geq 0}A_n\simeq (\mathbb{Q}_p/\mathbb{Z}_p)^{\lambda}$.
- What can be said about A_n for $n < n_0$?

 ${\it K}={\it imaginary}$ quadratic field in which 3 does not split p=3

• Suppose A_0 is cyclic 3

 $\mathcal{K}=$ imaginary quadratic field in which 3 does not split p=3

- Suppose A_0 is cyclic 3
- A_1 is one of the following:

K = imaginary quadratic field in which 3 does not split n = 3

- p=3
 - Suppose A_0 is cyclic 3
 - A_1 is one of the following:
 - 3 × 3 × 3

K = imaginary quadratic field in which 3 does not splitp = 3

- Suppose A_0 is cyclic 3
- A_1 is one of the following:
- 3 × 3 × 3
- $3^{s+1} \times 3^s$ with $s \ge 1$

K = imaginary quadratic field in which 3 does not splitp = 3

- Suppose A_0 is cyclic 3
- A_1 is one of the following:
- 3 × 3 × 3
- $3^{s+1} \times 3^s$ with $s \ge 1$
- $3^{s+1} \times 3^{s+1}$, with $s \ge 1$

K = imaginary quadratic field in which 3 does not split

$$p = 3$$

- Suppose A_0 is cyclic 3
- A_1 is one of the following:
- 3 × 3 × 3
- $3^{s+1} \times 3^s$ with $s \ge 1$
- $3^{s+1} \times 3^{s+1}$, with $s \ge 1$
- 9

K = imaginary quadratic field in which 3 does not split

$$p = 3$$

- Suppose A_0 is cyclic 3
- A_1 is one of the following:
- 3 × 3 × 3
- $3^{s+1} \times 3^s$ with $s \ge 1$
- $3^{s+1} \times 3^{s+1}$, with $s \ge 1$
- 9
- 9 is equivalent to $\lambda = 1$

The general case

• Suppose K = imaginary quadratic field in which p does not split

The general case

- Suppose K = imaginary quadratic field in which p does not split
- Assume A_0 is cyclic of order p^m with $m \ge 1$.

The general case

- Suppose K = imaginary quadratic field in which p does not split
- Assume A_0 is cyclic of order p^m with $m \ge 1$.
- **Theorem.** A_1 is one of the following:

$$(\mathbb{Z}/p^m\mathbb{Z})^p$$
.

$$ig(\mathbb{Z}/p^{m-1}\mathbb{Z}ig) imesig(\mathbb{Z}/p^{s+1}\mathbb{Z}ig)^a imesig(\mathbb{Z}/p^s\mathbb{Z}ig)^{p-1-a}$$
 with $m\leq s$ and $1\leq a\leq p-1$.

$$\left(\mathbb{Z}/p^{m+1}\mathbb{Z}\right)\times\left(\mathbb{Z}/p^{s+1}\mathbb{Z}\right)^b\times\left(\mathbb{Z}/p^s\mathbb{Z}\right)^{p-1-b}$$
 with $0\leq s< m$ and $0\leq b\leq p-2$, and with $b\neq p-2$ if $m=s+1$.

4 D > 4 D > 4 E > 4 E > E 900

ullet The natural map $A_0 o A_1$ is injective.

- ullet The natural map $A_0 o A_1$ is injective.
- The norm $A_1 \rightarrow A_0$ is surjective.

- The natural map $A_0 \rightarrow A_1$ is injective.
- The norm $A_1 \rightarrow A_0$ is surjective.
- $G = Gal(K_1/K_0)$ cyclic of order p. Write $G = \langle \sigma \rangle$.

- The natural map $A_0 o A_1$ is injective.
- The norm $A_1 \rightarrow A_0$ is surjective.
- $G = Gal(K_1/K_0)$ cyclic of order p. Write $G = \langle \sigma \rangle$.
- $\mathbb{Z}_p[G]$ acts on A_1 , where $\mathbb{Z}_p = p$ -adic integers

- The natural map $A_0 \rightarrow A_1$ is injective.
- The norm $A_1 \rightarrow A_0$ is surjective.
- $G = Gal(K_1/K_0)$ cyclic of order p. Write $G = \langle \sigma \rangle$.
- $\mathbb{Z}_p[G]$ acts on A_1 , where $\mathbb{Z}_p = p$ -adic integers
- $A_1^G = A_0$

- The natural map $A_0 \rightarrow A_1$ is injective.
- The norm $A_1 \rightarrow A_0$ is surjective.
- $G = Gal(K_1/K_0)$ cyclic of order p. Write $G = \langle \sigma \rangle$.
- $\mathbb{Z}_p[G]$ acts on A_1 , where $\mathbb{Z}_p = p$ -adic integers
- $A_1^G = A_0$
- A_0 cyclic $\implies A_1 \simeq \mathbb{Z}_p[G]/I$ for some ideal I of $\mathbb{Z}_p[G]$.

Theorem

Let p be an odd prime and let G be the cyclic group of order p. Let $\mathbb{Z}_p[G]$ be the p-adic group ring of G. If A_1 is a non-trivial finite cyclic $\mathbb{Z}_p[G]$ -module such that the Tate cohomology group $\widehat{H}^0(G,A_1)=0$, then A_1 is isomorphic as an abelian group to one of the groups listed in the previous theorem.

• Let $\zeta = \zeta_p$.

- Let $\zeta = \zeta_p$.
- $\pi = \zeta 1$.

- Let $\zeta = \zeta_p$.
- $\pi = \zeta 1$.
- The non-zero ideals of $\mathbb{Z}_p[\zeta]$ have the form $\pi^r \mathbb{Z}_p[\zeta]$.

- Let $\zeta = \zeta_p$.
- $\pi = \zeta 1$.
- The non-zero ideals of $\mathbb{Z}_p[\zeta]$ have the form $\pi^r \mathbb{Z}_p[\zeta]$.
- $\mathbb{Z}_p[\zeta]/(\pi) \simeq \mathbb{F}_p$

Reiner's Classification of Ideals of $\mathbb{Z}_p[G]$

$$\mathbb{Z}_{p}[\sigma] \xrightarrow{\epsilon} \mathbb{Z}_{p}$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{\mod p}$$

$$\mathbb{Z}_{p}[\zeta] \xrightarrow{\mod \pi} \mathbb{F}_{p}$$

where $\epsilon: \mathbb{Z}_p[\sigma] \to \mathbb{Z}_p$ is the map $\sum a_i \sigma^i \mapsto \sum a_i$ and $\phi(\sigma) = \zeta_p$.

Reiner's Classification of Ideals of $\mathbb{Z}_p[G]$

$$\mathbb{Z}_{p}[\sigma] \xrightarrow{\epsilon} \mathbb{Z}_{p}$$

$$\downarrow \phi \qquad \qquad \downarrow \mod p$$

$$\mathbb{Z}_{p}[\zeta] \xrightarrow{\mod \pi} \mathbb{F}_{p}$$

where $\epsilon: \mathbb{Z}_p[\sigma] \to \mathbb{Z}_p$ is the map $\sum a_i \sigma^i \mapsto \sum a_i$ and $\phi(\sigma) = \zeta_p$.

$$\mathbb{Z}_p[\sigma] \simeq \{(x,y) \in \mathbb{Z}_p[\zeta] \times \mathbb{Z}_p \mid \phi(x) \bmod \pi = \epsilon(y) \bmod p \text{ in } \mathbb{F}_p\}.$$

Larry Washington (joint with Debanjana Kun The First Level of \mathbb{Z}_p -extensions and Compat

Reiner's Classification of Ideals of $\mathbb{Z}_p[G]$

$$\mathbb{Z}_{p}[\sigma] \xrightarrow{\epsilon} \mathbb{Z}_{p}$$

$$\downarrow \phi \qquad \qquad \downarrow \mod p$$

$$\mathbb{Z}_{p}[\zeta] \xrightarrow{\mod \pi} \mathbb{F}_{p}$$

where $\epsilon: \mathbb{Z}_p[\sigma] \to \mathbb{Z}_p$ is the map $\sum a_i \sigma^i \mapsto \sum a_i$ and $\phi(\sigma) = \zeta_p$.

$$\mathbb{Z}_p[\sigma] \simeq \{(x,y) \in \mathbb{Z}_p[\zeta] \times \mathbb{Z}_p \mid \phi(x) \bmod \pi = \epsilon(y) \bmod p \text{ in } \mathbb{F}_p\}.$$

Larry Washington (joint with Debanjana Kun The First Level of \mathbb{Z}_p -extensions and Compat

$$\mathbb{Z}_{p}[\sigma] \xrightarrow{\epsilon} \mathbb{Z}_{p}$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{\text{mod } p}$$

$$\mathbb{Z}_{p}[\zeta] \xrightarrow{\text{mod } \pi} \mathbb{F}_{p}$$

$$\mathbb{Z}_{p}[\sigma] \xrightarrow{\epsilon} \mathbb{Z}_{p}
\downarrow \phi \qquad \qquad \downarrow \mod p
\mathbb{Z}_{p}[\zeta] \xrightarrow{\mod \pi} \mathbb{F}_{p}$$

•
$$\pi = \zeta_p - 1$$

•
$$N = 1 + \sigma + \sigma^2 + \dots + \sigma^{p-1}$$

$$\mathbb{Z}_{p}[\sigma] \xrightarrow{\epsilon} \mathbb{Z}_{p}
\downarrow^{\phi} \qquad \qquad \downarrow^{\mod p}
\mathbb{Z}_{p}[\zeta] \xrightarrow{\mod \pi} \mathbb{F}_{p}$$

- $\pi = \zeta_p 1$
- $N = 1 + \sigma + \sigma^2 + \dots + \sigma^{p-1}$
- The action of $\mathbb{Z}_p[\sigma]$ is given by $\sigma(x,y)=(\zeta x,y)$. Therefore, $(\sigma-1)(x,y)=(\pi x,0)$ and N(x,y)=(0,py).

Larry Washington (joint with Debanjana KunThe First Level of \mathbb{Z}_p -extensions and Compat

Reiner: Let I be an ideal of finite index greater than 1 in $\mathbb{Z}_p[G]$ such that $|N(\mathbb{Z}[G]/I)| = p^m > 1$. Then there are

- (a) an integer $r \geq 1$,
- (b) an integer $b \in
 ho^m \mathbb{Z}_p/
 ho^{m+1} \mathbb{Z}_p$

such that

$$I=\mathbb{Z}_p[\sigma](\pi^r,b)+\mathbb{Z}_p(0,p^{m+1}).$$

Reiner: Let I be an ideal of finite index greater than 1 in $\mathbb{Z}_p[G]$ such that $|N(\mathbb{Z}[G]/I)| = p^m > 1$. Then there are

- (a) an integer $r \geq 1$,
- (b) an integer $b \in p^m \mathbb{Z}_p/p^{m+1} \mathbb{Z}_p$

such that

$$I = \mathbb{Z}_p[\sigma](\pi^r, b) + \mathbb{Z}_p(0, p^{m+1}).$$

Moreover,

$$|\mathbb{Z}_p[\sigma]/I|=p^{r+m}.$$

$$I=\mathbb{Z}_p[\sigma](\pi^r,b)+\mathbb{Z}_p(0,p^{m+1}).$$

$$I = \mathbb{Z}_p[\sigma](\pi^r, b) + \mathbb{Z}_p(0, p^{m+1}).$$

• Recall: $A_1^G = A_0$ and $A_0 = N(A_1)$.

Larry Washington (joint with Debanjana Kun The First Level of \mathbb{Z}_p -extensions and Compat

$$I = \mathbb{Z}_p[\sigma](\pi^r, b) + \mathbb{Z}_p(0, p^{m+1}).$$

• Recall: $A_1^G = A_0$ and $A_0 = N(A_1)$.

$$(\mathbb{Z}_p[\sigma]/I)^G = (N)(\mathbb{Z}_p[\sigma]/I) \Longleftrightarrow b \not\equiv 0 \pmod{p^{m+1}}.$$

$$I = \mathbb{Z}_p[\sigma](\pi^r, b) + \mathbb{Z}_p(0, p^{m+1}).$$

• Recall: $A_1^G = A_0$ and $A_0 = N(A_1)$.

$$(\mathbb{Z}_p[\sigma]/I)^G = (N)(\mathbb{Z}_p[\sigma]/I) \Longleftrightarrow b \not\equiv 0 \pmod{p^{m+1}}.$$

ullet The ideals that yield possibilities for A_1 have the form

$$I=\mathbb{Z}_p[\sigma](\pi^r,b_1p^m)+\mathbb{Z}_p(0,p^{m+1}), ext{ with } r\geq 1 ext{ and } 1\leq b_1\leq p-1.$$

• Analyzing the structure of $\mathbb{Z}_p[G]/I$ yields the theorem.

Larry Washington (joint with Debanjana Kun $^{\mathsf{The}}$ First Level of \mathbb{Z}_p -extensions and Compat

• The following are equivalent:

- The following are equivalent:
 - $\lambda = 1$

- The following are equivalent:
 - $\lambda = 1$
 - ullet A_0 and A_1 are non-trivial cyclic

- The following are equivalent:
 - $\lambda = 1$
 - A_0 and A_1 are non-trivial cyclic
 - $|A_1|/|A_0| = p$

- The following are equivalent:
 - $\lambda = 1$
 - A_0 and A_1 are non-trivial cyclic
 - $|A_1|/|A_0| = p$
- The Ellenberg-Jain-Venkatesh heuristics predict that the probability the Iwasawa invariant $\lambda=1$ is

$$p^{-1}\prod_{j=2}^{\infty}(1-p^{-j}).$$

- The following are equivalent:
 - $\lambda = 1$
 - A_0 and A_1 are non-trivial cyclic
 - $|A_1|/|A_0| = p$
- ullet The Ellenberg-Jain-Venkatesh heuristics predict that the probability the Iwasawa invariant $\lambda=1$ is

$$p^{-1}\prod_{j=2}^{\infty}(1-p^{-j}).$$

ullet The Cohen-Lenstra heuristics predict that the probability A_0 is cyclic is

$$p^{-1}(1-p^{-1})^{-2}\prod_{j=1}^{\infty}(1-p^{-j}).$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · か९○

We know that

$$\lambda=1\Longleftrightarrow \exists m\geq 1 \text{ such that } A_0\simeq \mathbb{Z}/p^m\mathbb{Z} \text{ and } A_1\simeq \mathbb{Z}/p^{m+1}\mathbb{Z}.$$

We know that

$$\lambda=1\Longleftrightarrow \exists m\geq 1 \text{ such that } A_0\simeq \mathbb{Z}/p^m\mathbb{Z} \text{ and } A_1\simeq \mathbb{Z}/p^{m+1}\mathbb{Z}.$$

• The conditional probability that $\lambda=1$ given that A_0 is cyclic equals the conditional probability that A_1 is cyclic given that A_0 is cyclic.

We know that

$$\lambda=1\Longleftrightarrow \exists m\geq 1 ext{ such that } A_0\simeq \mathbb{Z}/p^m\mathbb{Z} ext{ and } A_1\simeq \mathbb{Z}/p^{m+1}\mathbb{Z}.$$

- The conditional probability that $\lambda=1$ given that A_0 is cyclic equals the conditional probability that A_1 is cyclic given that A_0 is cyclic.
- Combining the CL and EJV heuristics yields

$$\mathsf{Prob}(\lambda = 1 \,|\, A_0 \;\mathsf{is}\;\mathsf{cyclic}) = \frac{\mathsf{Prob}(\lambda = 1)}{\mathsf{Prob}(A_0 \;\mathsf{is}\;\mathsf{cyclic})} = \frac{p-1}{p}.$$

Larry Washington (joint with Debanjana Kun The First Level of \mathbb{Z}_p -extensions and Compat

- If A_0 is cyclic, we know the possibilities for A_1 .
- Weight the possibilities for A_1 by the inverse of the sizes of their automorphism groups as $\mathbb{Z}_p[\sigma]$ -modules.

- If A_0 is cyclic, we know the possibilities for A_1 .
- Weight the possibilities for A_1 by the inverse of the sizes of their automorphism groups as $\mathbb{Z}_p[\sigma]$ -modules.
- Recall I can have the form $\mathbb{Z}_p[\sigma](\pi^r, b_1p^m) + \mathbb{Z}_p(0, p^m)$ with $1 \leq b_1 \leq p-1$.
- The automorphism group of $\mathbb{Z}_p[\sigma]/I$ is $(\mathbb{Z}_p[\sigma]/I)^{\times}$.

- If A_0 is cyclic, we know the possibilities for A_1 .
- Weight the possibilities for A_1 by the inverse of the sizes of their automorphism groups as $\mathbb{Z}_p[\sigma]$ -modules.
- Recall I can have the form $\mathbb{Z}_p[\sigma](\pi^r, b_1p^m) + \mathbb{Z}_p(0, p^m)$ with $1 \leq b_1 \leq p-1$.
- The automorphism group of $\mathbb{Z}_p[\sigma]/I$ is $(\mathbb{Z}_p[\sigma]/I)^{\times}$.
- If $\mathbb{Z}_p[\sigma]/I$ has order p^{m+r} , the order of its automorphism group is $(p-1)p^{m+r-1}$.

• If $\mathbb{Z}_p[\sigma]/I$ has order p^{m+r} , the order of its automorphism group is $(p-1)p^{m+r-1}$.

- If $\mathbb{Z}_p[\sigma]/I$ has order p^{m+r} , the order of its automorphism group is $(p-1)p^{m+r-1}$.
- There are p-1 ideals I with $\mathbb{Z}_p[\sigma]/I$ of order p^{m+r} :

$$I = \mathbb{Z}_p[\sigma](\pi^r, b_1 p^m) + \mathbb{Z}_p(0, p^m)$$
 with $1 \leq b_1 \leq p - 1$.

- If $\mathbb{Z}_p[\sigma]/I$ has order p^{m+r} , the order of its automorphism group is $(p-1)p^{m+r-1}$.
- There are p-1 ideals I with $\mathbb{Z}_p[\sigma]/I$ of order p^{m+r} :

$$I = \mathbb{Z}_p[\sigma](\pi^r, b_1 p^m) + \mathbb{Z}_p(0, p^m)$$
 with $1 \leq b_1 \leq p - 1$.

 $\sum_{A_1 \text{ such that } A_0 \text{ cyclic } p^m} \frac{1}{|\mathsf{Aut}(A_1)|} = \sum_{r=1}^{\infty} \frac{p-1}{(p-1)p^{r+m-1}} = \frac{1}{(p-1)p^{m-1}}.$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

- If $\mathbb{Z}_p[\sigma]/I$ has order p^{m+r} , the order of its automorphism group is $(p-1)p^{m+r-1}$.
- There are p-1 ideals I with $\mathbb{Z}_p[\sigma]/I$ of order p^{m+r} :

$$I = \mathbb{Z}_p[\sigma](\pi^r, b_1 p^m) + \mathbb{Z}_p(0, p^m)$$
 with $1 \leq b_1 \leq p - 1$.

 $\sum_{A_1 \text{ such that } A_0 \text{ cyclic } p^m} \frac{1}{|\mathsf{Aut}(A_1)|} = \sum_{r=1}^{\infty} \frac{p-1}{(p-1)p^{r+m-1}} = \frac{1}{(p-1)p^{m-1}}.$

• The p-1 in the numerator comes from the p-1 choices for b_1 .

• There are p-1 ideals that yield A_1 cyclic of order p^{m+1} .

- There are p-1 ideals that yield A_1 cyclic of order p^{m+1} .
- The automorphism groups have order $(p-1)p^m$.

- There are p-1 ideals that yield A_1 cyclic of order p^{m+1} .
- The automorphism groups have order $(p-1)p^m$.
- We obtain the heuristic prediction

$$\begin{aligned} \operatorname{Prob}(A_1 \text{ is cyclic } | A_0 \text{ cyclic } p^m) \\ &= \frac{\operatorname{Total weight of cyclic } A_1}{\operatorname{Total weight of all } A_1 \text{ with } A_0 \text{ cyclic } p^m} \\ &= \frac{(p-1)/(p-1)p^m}{1/(p-1)p^{m-1}} \\ &= \frac{p-1}{p}. \end{aligned}$$

- There are p-1 ideals that yield A_1 cyclic of order p^{m+1} .
- The automorphism groups have order $(p-1)p^m$.
- We obtain the heuristic prediction

$$\begin{aligned} \operatorname{Prob}(A_1 \text{ is cyclic } | A_0 \text{ cyclic } p^m) \\ &= \frac{\operatorname{Total weight of cyclic } A_1}{\operatorname{Total weight of all } A_1 \text{ with } A_0 \text{ cyclic } p^m} \\ &= \frac{(p-1)/(p-1)p^m}{1/(p-1)p^{m-1}} \\ &= \frac{p-1}{p}. \end{aligned}$$

ullet Therefore, the EJV heuristics for $\lambda=1$ are compatible with the CL heuristics.

This also indicates that all the possible groups listed in the theorem should occur.

	# of <i>d</i>	9	9×3	$3 \times 3 \times 3$	9×9	27×9	27×27
3 ∤ <i>d</i>	18315	.6669	.1118	.1104	.0728	.0267	.0079
3 d	12096	.6685	.1132	.1122	.0703	.0227	.0091
Predicted		.6667	.1111	.1111	.0741	.0247	.0082

81 × 27	81 × 81	$3^5 \times 3^4$	$3^5 \times 3^5$	$3^6 \times 3^5$
.0023	.0008	.0003	.0001	.0001
.0027	.0010	.0003	.0000	.0000
.0027	.0009	.0003	.0001	.0000

Table: A_0 is cyclic of order 3. Distribution of 3-parts of A_1 for fundamental discriminants of the form -1-3j for $10^6 \le j \le 10^6+2\times 10^5$ (the line $3 \nmid d$ and of the form -3j for $10^6 \le j \le 10^6+2\times 10^5$ (the line $3 \mid d$).

	Number of d	25	25 × 5	$25 \times 5 \times 5$	$25\times5\times5\times5$
-2 - 5k	588	.8078	.1582	.0272	.0051
-3 - 5k	561	.7843	.1765	.0196	.0143
-5 <i>k</i>	482	.8050	.1515	.0353	.0083
Predicted		.8000	.1600	.0320	.0048

$5 \times 5 \times 5 \times 5 \times 5$	$25\times25\times5\times5$	$25\times25\times25\times5$	$25\times25\times25\times25$
.0000	.0017	.0000	.0000
.0018	.0018	.0000	.0018
.0000	.0000	.0000	.0000
.0016	.0013	.0003	.0001

Table: A_0 is cyclic of order 5. Distribution of 5-parts of A_1 for fundamental discriminants of the form -2 - 5k, -3 - 5k, and -5k for $10^6 \le k < 10^6 + 10^4$.

Māuruuru